In the present contribution, we propose a novel conforming finite element scheme for the time-dependent Navier–Stokes equation, which is proven to be both convection quasi-robust and pressure robust. The method is built combining a ‘divergence-free’ velocity/pressure couple (such as the Scott–Vogelius element), a discontinuous Galerkin in time approximation and a suitable streamline upwind Petrov–Galerkin-curl stabilization. A set of numerical tests, in accordance with the theoretical results, is included.

Beirao da Veiga, L., Dassi, F., Vacca, G. (2024). Pressure robust SUPG-stabilized finite elements for the unsteady Navier-Stokes equation. IMA JOURNAL OF NUMERICAL ANALYSIS, 44(2 (March 2024)), 710-750 [10.1093/imanum/drad021].

Pressure robust SUPG-stabilized finite elements for the unsteady Navier-Stokes equation

Beirao da Veiga, L;Dassi, F
;
2024

Abstract

In the present contribution, we propose a novel conforming finite element scheme for the time-dependent Navier–Stokes equation, which is proven to be both convection quasi-robust and pressure robust. The method is built combining a ‘divergence-free’ velocity/pressure couple (such as the Scott–Vogelius element), a discontinuous Galerkin in time approximation and a suitable streamline upwind Petrov–Galerkin-curl stabilization. A set of numerical tests, in accordance with the theoretical results, is included.
Articolo in rivista - Articolo scientifico
convection quasi-robustness; finite element method; Navier–Stokes equations; pressure-robustness;
English
8-mag-2023
2024
44
2 (March 2024)
710
750
reserved
Beirao da Veiga, L., Dassi, F., Vacca, G. (2024). Pressure robust SUPG-stabilized finite elements for the unsteady Navier-Stokes equation. IMA JOURNAL OF NUMERICAL ANALYSIS, 44(2 (March 2024)), 710-750 [10.1093/imanum/drad021].
File in questo prodotto:
File Dimensione Formato  
Beirão da Veiga-2024-IMA Journal of Numerical Analysis-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/419078
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
Social impact