Transition metal dichalcogenides layered nano-crystals are emerging as promising candidates for next-generation optoelectronic and quantum devices. In such systems, the interaction between excitonic states and atomic vibrations is crucial for many fundamental properties, such as carrier mobilities, quantum coherence loss, and heat dissipation. In particular, to fully exploit their valley-selective excitations, one has to understand the many-body exciton physics of zone-edge states. So far, theoretical and experimental studies have mainly focused on the exciton–phonon dynamics in high-energy direct excitons involving zone-center phonons. Here, ultrafast electron diffraction and ab initio calculations are used to investigate the many-body structural dynamics following nearly- resonant excitation of low-energy indirect excitons in MoS2. By exploiting the large momentum carried by scattered electrons, the excitation of in-plane K- and Q- phonon modes are identified with E′ symmetry as key for the stabilization of indirect excitons generated via near-infrared light at 1.55 eV, and light is shed on the role of phonon anharmonicity and the ensuing structural evolution of the MoS2 crystal lattice. The results highlight the strong selectivity of phononic excitations directly associated with the specific indirect- exciton nature of the wavelength-dependent electronic transitions triggered in the system.

Hu, J., Xiang, Y., Ferrari, B., Scalise, E., Vanacore, G. (2023). Indirect Exciton–Phonon Dynamics in MoS2 Revealed by Ultrafast Electron Diffraction. ADVANCED FUNCTIONAL MATERIALS, 33(19 (May 8, 2023)) [10.1002/adfm.202206395].

Indirect Exciton–Phonon Dynamics in MoS2 Revealed by Ultrafast Electron Diffraction

Ferrari B. M.;Scalise E.;Vanacore G. M.
2023

Abstract

Transition metal dichalcogenides layered nano-crystals are emerging as promising candidates for next-generation optoelectronic and quantum devices. In such systems, the interaction between excitonic states and atomic vibrations is crucial for many fundamental properties, such as carrier mobilities, quantum coherence loss, and heat dissipation. In particular, to fully exploit their valley-selective excitations, one has to understand the many-body exciton physics of zone-edge states. So far, theoretical and experimental studies have mainly focused on the exciton–phonon dynamics in high-energy direct excitons involving zone-center phonons. Here, ultrafast electron diffraction and ab initio calculations are used to investigate the many-body structural dynamics following nearly- resonant excitation of low-energy indirect excitons in MoS2. By exploiting the large momentum carried by scattered electrons, the excitation of in-plane K- and Q- phonon modes are identified with E′ symmetry as key for the stabilization of indirect excitons generated via near-infrared light at 1.55 eV, and light is shed on the role of phonon anharmonicity and the ensuing structural evolution of the MoS2 crystal lattice. The results highlight the strong selectivity of phononic excitations directly associated with the specific indirect- exciton nature of the wavelength-dependent electronic transitions triggered in the system.
Articolo in rivista - Articolo scientifico
2D materials; exciton-phonon coupling; indirect excitons; MoS2; phonon anharmonicity; structural dynamics; ultrafast electron diffraction;
English
15-mar-2023
2023
33
19 (May 8, 2023)
2206395
partially_open
Hu, J., Xiang, Y., Ferrari, B., Scalise, E., Vanacore, G. (2023). Indirect Exciton–Phonon Dynamics in MoS2 Revealed by Ultrafast Electron Diffraction. ADVANCED FUNCTIONAL MATERIALS, 33(19 (May 8, 2023)) [10.1002/adfm.202206395].
File in questo prodotto:
File Dimensione Formato  
Hu-2023-Adv Funct Mater-preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 928 kB
Formato Adobe PDF
928 kB Adobe PDF Visualizza/Apri
Hu-2023-Adv Funct Mater-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/417036
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 15
Social impact