In this paper we prove that a finite group of order r has at most 7.3722⋅r[Formula present]+1.5315 subgroups.
Spiga, P. (2023). An explicit upper bound on the number of subgroups of a finite group. JOURNAL OF PURE AND APPLIED ALGEBRA, 227(6 (June 2023)) [10.1016/j.jpaa.2022.107312].
An explicit upper bound on the number of subgroups of a finite group
Spiga P.
2023
Abstract
In this paper we prove that a finite group of order r has at most 7.3722⋅r[Formula present]+1.5315 subgroups.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Spiga-2023-JourPureAppAlgebra-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
281.71 kB
Formato
Adobe PDF
|
281.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.