In this paper we prove that a finite group of order r has at most 7.3722⋅r[Formula present]+1.5315 subgroups.

Spiga, P. (2023). An explicit upper bound on the number of subgroups of a finite group. JOURNAL OF PURE AND APPLIED ALGEBRA, 227(6 (June 2023)) [10.1016/j.jpaa.2022.107312].

An explicit upper bound on the number of subgroups of a finite group

Spiga P.
2023

Abstract

In this paper we prove that a finite group of order r has at most 7.3722⋅r[Formula present]+1.5315 subgroups.
Articolo in rivista - Articolo scientifico
Bound; Subgroups;
English
30-dic-2022
2023
227
6 (June 2023)
107312
reserved
Spiga, P. (2023). An explicit upper bound on the number of subgroups of a finite group. JOURNAL OF PURE AND APPLIED ALGEBRA, 227(6 (June 2023)) [10.1016/j.jpaa.2022.107312].
File in questo prodotto:
File Dimensione Formato  
Spiga-2023-JourPureAppAlgebra-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 281.71 kB
Formato Adobe PDF
281.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/416061
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact