A subset X of a finite group G is said to be prime-power-independent if each element in X has prime power order and there is no proper subset Y of X with 〈Y,Φ(G)〉=〈X,Φ(G)〉, where Φ(G) is the Frattini subgroup of G. A group G is Bpp if all prime-power-independent generating sets for G have the same cardinality. We prove that, if G is Bpp, then G is solvable. Pivoting on some recent results of Krempa and Stocka (2014); Stocka (2020), this yields a complete classification of Bpp-groups.

Lucchini, A., Spiga, P. (2022). Independent sets of generators of prime power order. EXPOSITIONES MATHEMATICAE, 40(1), 140-154 [10.1016/j.exmath.2021.06.003].

Independent sets of generators of prime power order

Spiga P.
2022

Abstract

A subset X of a finite group G is said to be prime-power-independent if each element in X has prime power order and there is no proper subset Y of X with 〈Y,Φ(G)〉=〈X,Φ(G)〉, where Φ(G) is the Frattini subgroup of G. A group G is Bpp if all prime-power-independent generating sets for G have the same cardinality. We prove that, if G is Bpp, then G is solvable. Pivoting on some recent results of Krempa and Stocka (2014); Stocka (2020), this yields a complete classification of Bpp-groups.
Articolo in rivista - Articolo scientifico
Burnside basis theorem; Generating set; Independent sets;
English
1-lug-2021
2022
40
1
140
154
reserved
Lucchini, A., Spiga, P. (2022). Independent sets of generators of prime power order. EXPOSITIONES MATHEMATICAE, 40(1), 140-154 [10.1016/j.exmath.2021.06.003].
File in questo prodotto:
File Dimensione Formato  
Spiga-2022-Expo Math-preprint.pdf

Solo gestori archivio

Descrizione: Research Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 207.01 kB
Formato Adobe PDF
207.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/416057
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
Social impact