Given a positive operator A on some Hilbert space, and a nonnegative decreasing summable function μ, we consider the abstract equation with memory u¨(t)+Au(t)-∫0tμ(s)Au(t-s)ds=0modeling the dynamics of linearly viscoelastic solids. The purpose of this work is to provide numerical evidence of the fact that the energy E(t)=(1-∫0tμ(s)ds)‖u(t)‖12+‖u˙(t)‖2+∫0tμ(s)‖u(t)-u(t-s)‖12dsof any nontrivial solution cannot decay faster than exponential, no matter how fast might be the decay of the memory kernel μ. This will be accomplished by simulating the integro-differential equation for different choices of the memory kernel μ and of the initial data.
Antonietti, P., Liverani, L., Pata, V. (2023). Lack of superstable trajectories in linear viscoelasticity: a numerical approach. NUMERISCHE MATHEMATIK, 153(4), 611-633 [10.1007/s00211-023-01351-1].
Lack of superstable trajectories in linear viscoelasticity: a numerical approach
Liverani L.Co-primo
;
2023
Abstract
Given a positive operator A on some Hilbert space, and a nonnegative decreasing summable function μ, we consider the abstract equation with memory u¨(t)+Au(t)-∫0tμ(s)Au(t-s)ds=0modeling the dynamics of linearly viscoelastic solids. The purpose of this work is to provide numerical evidence of the fact that the energy E(t)=(1-∫0tμ(s)ds)‖u(t)‖12+‖u˙(t)‖2+∫0tμ(s)‖u(t)-u(t-s)‖12dsof any nontrivial solution cannot decay faster than exponential, no matter how fast might be the decay of the memory kernel μ. This will be accomplished by simulating the integro-differential equation for different choices of the memory kernel μ and of the initial data.File | Dimensione | Formato | |
---|---|---|---|
Antonietti-2023-Numer Math-VoR.pdf
accesso aperto
Descrizione: Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
1.88 MB
Formato
Adobe PDF
|
1.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.