We prove that the Dìaz-Park’s sharpness conjecture holds for saturated fusion systems defined on a Sylow p-subgroup of the group G2(p), for p ≥ 5.
Grazian, V., Marmo, E. (2023). Sharpness of saturated fusion systems on a Sylow p-subgroup of G2(p). HOMOLOGY, HOMOTOPY AND APPLICATIONS, 25(2), 329-342 [10.4310/HHA.2023.v25.n2.a14].
Sharpness of saturated fusion systems on a Sylow p-subgroup of G2(p)
Grazian, V;Marmo, E
2023
Abstract
We prove that the Dìaz-Park’s sharpness conjecture holds for saturated fusion systems defined on a Sylow p-subgroup of the group G2(p), for p ≥ 5.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.