We prove that the Dìaz-Park’s sharpness conjecture holds for saturated fusion systems defined on a Sylow p-subgroup of the group G2(p), for p ≥ 5.

Grazian, V., Marmo, E. (2023). Sharpness of saturated fusion systems on a Sylow p-subgroup of G2(p). HOMOLOGY, HOMOTOPY AND APPLICATIONS, 25(2), 329-342 [10.4310/HHA.2023.v25.n2.a14].

Sharpness of saturated fusion systems on a Sylow p-subgroup of G2(p)

Grazian, V;Marmo, E
2023

Abstract

We prove that the Dìaz-Park’s sharpness conjecture holds for saturated fusion systems defined on a Sylow p-subgroup of the group G2(p), for p ≥ 5.
Articolo in rivista - Articolo scientifico
sharpness, homology decomposition, classifying space, fusion systems, Mackey functors
English
2023
25
2
329
342
none
Grazian, V., Marmo, E. (2023). Sharpness of saturated fusion systems on a Sylow p-subgroup of G2(p). HOMOLOGY, HOMOTOPY AND APPLICATIONS, 25(2), 329-342 [10.4310/HHA.2023.v25.n2.a14].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/414507
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact