The JET 2019-2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019-2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (alpha) physics in the coming D-T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D-T benefited from the highest D-D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.

Mailloux, J., Abid, N., Abraham, K., Abreu, P., Adabonyan, O., Adrich, P., et al. (2022). Overview of JET results for optimising ITER operation. NUCLEAR FUSION, 62(4) [10.1088/1741-4326/ac47b4].

Overview of JET results for optimising ITER operation

Bonanomi, N;Casiraghi, I;Cavedon, M;Croci, G;Dal Molin, A;Giacomelli, L;Gorini, G;Hu, Z;Mariani, A;Milocco, A;Muraro, A;Nocente, M;Panontin, E;Putignano, O;Rebai, M;Rigamonti, D;Sozzi, C;Tardocchi, M;
2022

Abstract

The JET 2019-2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019-2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (alpha) physics in the coming D-T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D-T benefited from the highest D-D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.
Articolo in rivista - Articolo scientifico
D-T preparation; isotope; JET with ITER-like wall; nuclear technology; overview; plasma facing components (PFC); tritium operations;
English
2022
62
4
042026
open
Mailloux, J., Abid, N., Abraham, K., Abreu, P., Adabonyan, O., Adrich, P., et al. (2022). Overview of JET results for optimising ITER operation. NUCLEAR FUSION, 62(4) [10.1088/1741-4326/ac47b4].
File in questo prodotto:
File Dimensione Formato  
Mailloux-2022-Nuclear Fusion-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 6.4 MB
Formato Adobe PDF
6.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/413689
Citazioni
  • Scopus 82
  • ???jsp.display-item.citation.isi??? 89
Social impact