B cell Acute Lymphoblastic Leukemia (B ALL) represents the most common cancer in children. Recent advances in treatment protocols allowedthe vast majorityof patients to achieve complete remission. However, a substantial number of patients relapsesandnew treatment for this category of patients represent a clinical need.Adoptive Cell Therapy with Chimeric Antigen Receptor (CAR)T cellsprovides a more specific and effective target of leukemic cells.CAR molecules are synthetic receptors, which combine the antigen specificity of antibodies with T-cell effector functions.In our center,we investigatedthe use of non-viral engineering of an allogeneicT-cell population generated according to cytokine-induced killer (CIK) cell protocol of differentiation as alternative to conventional patient-derived CAR T cells engineered with viral vectors. This population is characterized by the enrichment of cytotoxic CD3+CD56+ cells and a high profile of safety, with minimal occurrence of graft-versus-host disease after allogeneic CIK infusion in leukemic patients. Moreover, CIK cell expansion protocol is easy, Good Manufacturing Practices compliant and cost-effective, making CIK cells a suitable cell source for CAR engineering.Our group has previously developed and optimized a non-viral Sleeping Beauty (SB) transposon platform to redirect CIK cells with different CARs, obtainingstable and efficient CAR expression, high viability and in vitro expansion with a single stimulation step.SB system consists of two elements, the transposon plasmidcontaining the transgene of interest, and the transposase which mediates stable genomic integration through a “cut-and-paste” mechanism. This approach allows to overcome the main issues associated with viral vectors, such as potential high manufacturing costs, regulatory hindrances and scale-up complexities.Othernon-viral approaches, including thepiggyback transposon, the utilization of mRNA, Lipid-based and Polymer-based DNA nanocarriers,and nanovectorshave recentlyentered the field and start to being applied in emerging clinical trials.Here, weprovidean extensiveoverview ofthesenovel and virus-freemethods for T-cell engineeringand discusstheir safetyand efficacy. Moreover, we focus onthe study of the interactions of anti-CD19 CAR T cells with the tumor microenvironment (TME) in B-ALL and aims atidentifying factors that influence the activity and potency of anti-CD19CAR T cells andinduce drugresistance. For this purpose, we performed transcriptional analysis of bone marrow (BM) samples collected at early time after CAR-T cell infusion by means of single-cell RNA sequencing. Preliminary analyses of the hematology laboratory and flow cytometry dataconducted on total peripheral bloodfrom CAR T treated patients led us to hypothesize that CAR T cells in B-ALL patients elicit an acuteresponse involving both innate and adaptive immunity which is then actively regulated. Distinct shifts in BM composition after CAR T-cell treatment were observed, as well as a significant increase in the fraction of myeloid and NK cells after infusion and enrichment of myeloid-derived suppressor cells, as compared to sample at relapse. Gene set enrichment analysis across individual cell types using the Hallmark gene set showed a significant enrichment for gene expression profile associated with IFN-α and IFN- response, hypoxia, IL6 JAK STAT3, and WNT β-catenin signaling. In parallel, an increase of CD8 exhausted cell population after CAR T-cell infusion was observed associated with IFNα and IFN-response, IL2 STAT5, and Hedgehog signalling.Validation by flow cytometry is ongoing to confirme involvement ofpathways ofsuch as TGF-β, Hypoxia and theCCL2-CCR2 axisemerged by modelling intercellular communications.In conclusion, CAR T-cellmediated myeloid activation are associated with pathways of immune dysregulation that may dampen CAR T cell expansion and antagonize the effects of the therapy.

La leucemia linfoblastica acuta a cellule B (B ALL) rappresenta il tumore più comune nei bambini. Recenti progressi hanno permesso alla maggioranza dei pazienti di ottenere una remissione completa.Un numero sostanziale di pazienti recidiva e un nuovo trattamento per questa categoriarappresenta un'esigenza clinica. La terapia cellulare con cellule CAR fornisce un bersaglio più specifico ed efficace delle cellule leucemiche.Le CAR sono recettori sintetici che combinano la specificità dell'antigene degli anticorpi con le funzioni di effettore delle cellule T.Nel nostro centro,abbiamo studiato l'uso dell'ingegneria non virale su una popolazione di cellule T allogeniche generate secondo il protocollo di differenziazione delle cellule CIK come alternativa alle convenzionali cellule CAR ingegnerizzate con vettori virali. Questa popolazione caratterizzata dall'arricchimento di cellule CD3+CD56+ citotossiche e da un elevato profilo di sicurezza. Inoltre, il protocollo di espansione è semplice, conforme alle regole GMPed economicamente vantaggioso, rendendole una fonte cellulare adatta per l'ingegneria CAR.Il nostro gruppo ha precedentemente ottimizzato una piattaforma non virale di trasposoni Sleeping Beauty (SB) per reindirizzare le cellule CIK con diversi CAR, ottenendo un'espressione stabile ed efficiente, elevata vitalità e espansione in vitro con un'unica fase di stimolazione. Il sistema è costituito da due elementi, il plasmide trasposone contenente il transgene di interesse e la trasposasi che media l'integrazione genomica stabile attraverso un meccanismo di taglia e incolla. Oltre al SB, altri recenti approcci non virali, tra cui il trasposone piggyback, l'utilizzo di mRNA, i nanocarrier di DNA a base lipidica e polimerica e i nanovettori, iniziano a essere applicati negli studi clinici emergenti. Qui, forniamo un'ampia panoramica di questi metodi innovativi e privi di virus per l'ingegneria delle cellule T e discutiamo la loro sicurezza ed efficacia. Inoltre, la tesi si concentra sullo studio delle interazioni delle cellule T CAR anti-CD19 con il microambiente tumorale (TME) nella B-ALL e mira a identificare i fattori che influenzano l'attività e la potenza delle cellule T anti-CD19CAR e che inducono la resistenza ai farmaci. A questo scopo, abbiamo eseguito l'analisi trascrizionale di campioni di midollo osseo (BM) raccolti precocemente dopo l'infusione di cellule CAR-T mediante sequenziamento di RNA a singola cellula. Le analisi preliminari dei dati del laboratorio ematologico e della citometria a flusso condotte sul sangue periferico totale dei pazienti trattati con CAR T ci hanno portato a ipotizzare che le cellule CAR T nei pazienti affetti da B-ALL suscitino una risposta acuta che coinvolge sia l'immunità innata che quella adattativa, che viene poi regolata attivamente. Sono stati osservati cambiamenti distinti nella composizione del BM dopo il trattamento con cellule CAR T, nonché un aumento significativo della frazione di cellule mieloidi e NK e un arricchimento delle cellule soppressorie di derivazione mieloide, rispetto al campione alla ricaduta. L'analisi dell'arricchimento dei set di geni tra i singoli tipi di cellule utilizzando il set Hallmark ha mostrato un arricchimento significativo per il profilo di espressione genica associato alla risposta IFN-α e IFN-γ, all'ipossia, all'IL6JAKSTAT3 e alla segnalazione WNT β-catenina. Parallelamente, è stato osservato un aumento della popolazione di cellule CD8 esauste dopo l'infusione di cellule T CAR associato a IFNα e IFN-γ, IL2 STAT5 e segnalazione di Hedgehog. È in corso la convalida mediante citometria a flusso per confermare il coinvolgimento di vie quali TGFβ, ipossia e l'asse CCL2-CCR2 emerso dalla modellazione delle comunicazioni intercellulari.In conclusione l'attivazione mieloide mediata dalle cellule CAR T è associata a vie di disregolazione immunitaria che possono attenuare l'espansione delle CAR e antagonizzare gli effetti della terapia

(2023). Impact of the Tumor microenvironment on the activity of Chimeric Antigen Receptor (CAR) T Cells in B-cell precursor Acute Lymphoblastic Leukemia (B-ALL). (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).

Impact of the Tumor microenvironment on the activity of Chimeric Antigen Receptor (CAR) T Cells in B-cell precursor Acute Lymphoblastic Leukemia (B-ALL)

PONZO, MARIANNA
2023

Abstract

B cell Acute Lymphoblastic Leukemia (B ALL) represents the most common cancer in children. Recent advances in treatment protocols allowedthe vast majorityof patients to achieve complete remission. However, a substantial number of patients relapsesandnew treatment for this category of patients represent a clinical need.Adoptive Cell Therapy with Chimeric Antigen Receptor (CAR)T cellsprovides a more specific and effective target of leukemic cells.CAR molecules are synthetic receptors, which combine the antigen specificity of antibodies with T-cell effector functions.In our center,we investigatedthe use of non-viral engineering of an allogeneicT-cell population generated according to cytokine-induced killer (CIK) cell protocol of differentiation as alternative to conventional patient-derived CAR T cells engineered with viral vectors. This population is characterized by the enrichment of cytotoxic CD3+CD56+ cells and a high profile of safety, with minimal occurrence of graft-versus-host disease after allogeneic CIK infusion in leukemic patients. Moreover, CIK cell expansion protocol is easy, Good Manufacturing Practices compliant and cost-effective, making CIK cells a suitable cell source for CAR engineering.Our group has previously developed and optimized a non-viral Sleeping Beauty (SB) transposon platform to redirect CIK cells with different CARs, obtainingstable and efficient CAR expression, high viability and in vitro expansion with a single stimulation step.SB system consists of two elements, the transposon plasmidcontaining the transgene of interest, and the transposase which mediates stable genomic integration through a “cut-and-paste” mechanism. This approach allows to overcome the main issues associated with viral vectors, such as potential high manufacturing costs, regulatory hindrances and scale-up complexities.Othernon-viral approaches, including thepiggyback transposon, the utilization of mRNA, Lipid-based and Polymer-based DNA nanocarriers,and nanovectorshave recentlyentered the field and start to being applied in emerging clinical trials.Here, weprovidean extensiveoverview ofthesenovel and virus-freemethods for T-cell engineeringand discusstheir safetyand efficacy. Moreover, we focus onthe study of the interactions of anti-CD19 CAR T cells with the tumor microenvironment (TME) in B-ALL and aims atidentifying factors that influence the activity and potency of anti-CD19CAR T cells andinduce drugresistance. For this purpose, we performed transcriptional analysis of bone marrow (BM) samples collected at early time after CAR-T cell infusion by means of single-cell RNA sequencing. Preliminary analyses of the hematology laboratory and flow cytometry dataconducted on total peripheral bloodfrom CAR T treated patients led us to hypothesize that CAR T cells in B-ALL patients elicit an acuteresponse involving both innate and adaptive immunity which is then actively regulated. Distinct shifts in BM composition after CAR T-cell treatment were observed, as well as a significant increase in the fraction of myeloid and NK cells after infusion and enrichment of myeloid-derived suppressor cells, as compared to sample at relapse. Gene set enrichment analysis across individual cell types using the Hallmark gene set showed a significant enrichment for gene expression profile associated with IFN-α and IFN- response, hypoxia, IL6 JAK STAT3, and WNT β-catenin signaling. In parallel, an increase of CD8 exhausted cell population after CAR T-cell infusion was observed associated with IFNα and IFN-response, IL2 STAT5, and Hedgehog signalling.Validation by flow cytometry is ongoing to confirme involvement ofpathways ofsuch as TGF-β, Hypoxia and theCCL2-CCR2 axisemerged by modelling intercellular communications.In conclusion, CAR T-cellmediated myeloid activation are associated with pathways of immune dysregulation that may dampen CAR T cell expansion and antagonize the effects of the therapy.
Gaipa, Giuseppe
MAGNANI, CHIARA FRANCESCA
CAR T; B-ALL; microambiente; scRNAseq; immunosoppressione
CAR T; B-ALL; TME; scRNAseq; immunosuppression
MED/15 - MALATTIE DEL SANGUE
English
20-apr-2023
MEDICINA TRASLAZIONALE E MOLECOLARE - DIMET
35
2021/2022
embargoed_20260420
(2023). Impact of the Tumor microenvironment on the activity of Chimeric Antigen Receptor (CAR) T Cells in B-cell precursor Acute Lymphoblastic Leukemia (B-ALL). (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_735766.pdf

embargo fino al 20/04/2026

Descrizione: Impact of the Tumor microenvironment on the activity of Chimeric Antigen Receptor (CAR) T Cells in B-cell precursor Acute Lymphoblastic Leukemia (B-ALL)
Tipologia di allegato: Doctoral thesis
Dimensione 8.36 MB
Formato Adobe PDF
8.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/413075
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact