In this paper the multi-period strategic planning problem for a consumer sumer product manufacturing chain is considered. Our discussion is focused on investment decisions which, are economically optimal over the whole planning horizonT, while meeting customer demands and conforming to technological requirements. In strategic planning, time and uncertainty play important roles. The uncertainties in the model are due to different levels of forecast demands, cost estimates and equipment behaviour. The main aim of this paper is to develop and analyse a multiperiod stochastic model representing the entire manufacturing chain, from the acquisitions of raw material to the delivering of final products. The resulting optimization problem is computationally intractable because of the enormous, and sometimes unrealistic, number of scenarios that must be considered in order to identify the optimal planning strategy. We propose two different solution approaches; firstly, we apply a scenario risk analysis giving the related results of experiments on a particular real data set. We then describe and investigate an Integer Stochastic Programming formulation of the problem and propose, as a solution technique, a variation of Benders decomposition method, namely theL-shaped method.
Baricelli, P., Lucas, C., Messina, V., Mitra, G. (1996). A model for strategic planning under uncertainty. TOP, 4(2), 361-384 [10.1007/BF02568518].
A model for strategic planning under uncertainty
MESSINA, VINCENZINA;
1996
Abstract
In this paper the multi-period strategic planning problem for a consumer sumer product manufacturing chain is considered. Our discussion is focused on investment decisions which, are economically optimal over the whole planning horizonT, while meeting customer demands and conforming to technological requirements. In strategic planning, time and uncertainty play important roles. The uncertainties in the model are due to different levels of forecast demands, cost estimates and equipment behaviour. The main aim of this paper is to develop and analyse a multiperiod stochastic model representing the entire manufacturing chain, from the acquisitions of raw material to the delivering of final products. The resulting optimization problem is computationally intractable because of the enormous, and sometimes unrealistic, number of scenarios that must be considered in order to identify the optimal planning strategy. We propose two different solution approaches; firstly, we apply a scenario risk analysis giving the related results of experiments on a particular real data set. We then describe and investigate an Integer Stochastic Programming formulation of the problem and propose, as a solution technique, a variation of Benders decomposition method, namely theL-shaped method.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.