Heart failure (HF) is a complex disease due to the intricate interplay of several mechanisms, which therefore implies the need for a multimarker strategy to better personalize the care of patients with HF. In this study, we developed a targeted mass spectrometry approach based on multiple reaction monitoring (MRM) to measure multiple circulating protein biomarkers, involved in cardiovascular disease, to address their relevance in the human HF, intending to assess the feasibility of the workflow in the disease monitoring and risk stratification. In this study, we analyzed a total of 60 plasma proteins in 30 plasma samples from eight control subjects and 22 ageand gender- matched HF patients. We identified a panel of four plasma proteins, namely Neuropilin-2, Beta 2 microglobulin, alpha-1-antichymotrypsin, and complement component C9, that were more abundant in HF patients in relation to disease severity and pulmonary dysfunction. Moreover, we showed the ability of the combination of these candidate proteins to discriminate, with sufficient accuracy, HF patients from healthy subjects. In conclusion, we demonstrated the feasibility and potential of a proteomic workflow based on MRM mass spectrometry for the evaluation of multiple proteins in human plasma and the identification of a panel of biomarkers of HF severity.

Brioschi, M., Gianazza, E., Agostoni, P., Zoanni, B., Mallia, A., Banfi, C. (2021). Multiplexed MRM-based proteomics identified multiple biomarkers of disease severity in human heart failure. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 22(2), 1-15 [10.3390/ijms22020838].

Multiplexed MRM-based proteomics identified multiple biomarkers of disease severity in human heart failure

Brioschi M.
Primo
;
2021

Abstract

Heart failure (HF) is a complex disease due to the intricate interplay of several mechanisms, which therefore implies the need for a multimarker strategy to better personalize the care of patients with HF. In this study, we developed a targeted mass spectrometry approach based on multiple reaction monitoring (MRM) to measure multiple circulating protein biomarkers, involved in cardiovascular disease, to address their relevance in the human HF, intending to assess the feasibility of the workflow in the disease monitoring and risk stratification. In this study, we analyzed a total of 60 plasma proteins in 30 plasma samples from eight control subjects and 22 ageand gender- matched HF patients. We identified a panel of four plasma proteins, namely Neuropilin-2, Beta 2 microglobulin, alpha-1-antichymotrypsin, and complement component C9, that were more abundant in HF patients in relation to disease severity and pulmonary dysfunction. Moreover, we showed the ability of the combination of these candidate proteins to discriminate, with sufficient accuracy, HF patients from healthy subjects. In conclusion, we demonstrated the feasibility and potential of a proteomic workflow based on MRM mass spectrometry for the evaluation of multiple proteins in human plasma and the identification of a panel of biomarkers of HF severity.
Articolo in rivista - Articolo scientifico
heart failure; Mass spectrometry; Multiple Reaction Monitoring (MRM); Proteomics;
English
2021
22
2
1
15
838
none
Brioschi, M., Gianazza, E., Agostoni, P., Zoanni, B., Mallia, A., Banfi, C. (2021). Multiplexed MRM-based proteomics identified multiple biomarkers of disease severity in human heart failure. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 22(2), 1-15 [10.3390/ijms22020838].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/407777
Citazioni
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
Social impact