We study the role of quantum fluctuations of atomic nuclei in the real-time dynamics of non-equilibrium macro-molecular transitions. To this goal we introduce an extension of the dominant reaction pathways formalism, in which the quantum corrections to the classical overdamped Langevin dynamics are rigorously taken into account to order 2. We first illustrate our approach in simple cases, and compare with the results of the instanton theory. Then we apply our method to study the C7eq → C7ax transition of alanine dipeptide. We find that the inclusion of quantum fluctuations can significantly modify the reaction mechanism for peptides. For example, the energy difference which is overcome along the most probable pathway is reduced by as much as 50.
Beccara, S., Garberoglio, G., Faccioli, P. (2011). Quantum diffusive dynamics of macromolecular transitions. THE JOURNAL OF CHEMICAL PHYSICS, 135(3) [10.1063/1.3609244].
Quantum diffusive dynamics of macromolecular transitions
Faccioli, P
2011
Abstract
We study the role of quantum fluctuations of atomic nuclei in the real-time dynamics of non-equilibrium macro-molecular transitions. To this goal we introduce an extension of the dominant reaction pathways formalism, in which the quantum corrections to the classical overdamped Langevin dynamics are rigorously taken into account to order 2. We first illustrate our approach in simple cases, and compare with the results of the instanton theory. Then we apply our method to study the C7eq → C7ax transition of alanine dipeptide. We find that the inclusion of quantum fluctuations can significantly modify the reaction mechanism for peptides. For example, the energy difference which is overcome along the most probable pathway is reduced by as much as 50.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.