Magnetic materials may be engineered to produce thermoelectric materials using spin-related effects. However, clear understanding of localized magnetic moments (µI), free carriers, and Seebeck coefficient (S) interrelations is mandatory for efficient material design. In this work, we investigate µI influence on the spin-dependent S of model ferromagnetic thin films, allowing µI thermal fluctuations, ordering, and density variation influence to be independently investigated. µI influence on free carrier polarization is found to be of highest importance on S: efficient coupling of free carrier spin and localized magnetic moment promotes the increase of S, while spin-dependent relaxation time difference between the two spin-dependent conduction channels leads to S decrease. Our observations support new routes for thermoelectric material design based on spin-related effects in ferromagnetic materials.
Portavoce, A., Assaf, E., Bertoglio, M., Narducci, D., Bertaina, S. (2023). Magnetic moment impact on spin-dependent Seebeck coefficient of ferromagnetic thin films. SCIENTIFIC REPORTS, 13(1) [10.1038/s41598-022-26993-3].
Magnetic moment impact on spin-dependent Seebeck coefficient of ferromagnetic thin films
Narducci D.;
2023
Abstract
Magnetic materials may be engineered to produce thermoelectric materials using spin-related effects. However, clear understanding of localized magnetic moments (µI), free carriers, and Seebeck coefficient (S) interrelations is mandatory for efficient material design. In this work, we investigate µI influence on the spin-dependent S of model ferromagnetic thin films, allowing µI thermal fluctuations, ordering, and density variation influence to be independently investigated. µI influence on free carrier polarization is found to be of highest importance on S: efficient coupling of free carrier spin and localized magnetic moment promotes the increase of S, while spin-dependent relaxation time difference between the two spin-dependent conduction channels leads to S decrease. Our observations support new routes for thermoelectric material design based on spin-related effects in ferromagnetic materials.File | Dimensione | Formato | |
---|---|---|---|
Portavoce-2023-Sci Rep-VoR.pdf
accesso aperto
Descrizione: Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
2.01 MB
Formato
Adobe PDF
|
2.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.