We discuss stability and interpolation properties of serendipity nodal virtual element spaces in two and three dimensions. Notably, we rigorously prove stability bounds for the “dofi-dofi” stabilization and show that the best interpolation error in serendipity nodal spaces is controlled, up to constants, by a best polynomial approximation term.
Beirao da Veiga, L., Mascotto, L. (2023). Stability and interpolation properties of serendipity nodal virtual elements. APPLIED MATHEMATICS LETTERS, 142(August 2023) [10.1016/j.aml.2023.108639].
Stability and interpolation properties of serendipity nodal virtual elements
Beirao da Veiga, Lourenco;Mascotto, Lorenzo
2023
Abstract
We discuss stability and interpolation properties of serendipity nodal virtual element spaces in two and three dimensions. Notably, we rigorously prove stability bounds for the “dofi-dofi” stabilization and show that the best interpolation error in serendipity nodal spaces is controlled, up to constants, by a best polynomial approximation term.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Beiraoda Veiga-2023-Appl Math Lett-AAM.pdf
embargo fino al 11/03/2025
Descrizione: Author’s Accepted Manuscript
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Dominio pubblico
Dimensione
350.97 kB
Formato
Adobe PDF
|
350.97 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.