Glioblastoma multiforme (GBM) is a IV grade astrocytoma and it is the most common and aggressive tumor of the central nervous system (CNS). GBM is characterized by an infiltrative nature, high heterogeneity, aggressiveness, and recurrence. There are no curative treatments and the standard care is based on Stupp’s protocol, with surgery, radiotherapy and temozolomide (TMZ) chemotherapy. However, therapy resistance and cancer immune escape are important challenges for physicians and scientists. Nanomedicine gained a lot of attention given the versatility of its application, including the crossing of blood-brain barrier (BBB), specific targeted therapy and drug delivery. In addition, nanomedicine has been successfully applied in the field of cancer immunotherapy, for example using nanoparticles (NPs) for the delivery of drugs, monoclonal antibodies (mAbs) or nucleic acids. The rationale behind immunotherapy is to stimulate the immune system to react against cancer, even in tumors with scarce immune response like GBM. In the context of brain disease therapy, nanomedicine turned out to be an excellent tool also for drug delivery, especially considering that GBM cancer cells can exploit cellular structures like Tunneling nanotubes (TnTs) to exchange organelles, cellular material, soluble factors, drugs and even NPs. Given this information, TnTs could be exploited to prevent cellular communication (by inhibiting their formation) or to spread anticancer drugs among different cells. Finally, in the last years histone deacetylase (HDAC) inhibitors (HDACis) were investigated as anticancer drugs in many tumors, GBM included. HDACis are divided into pan-HDACi (that decrease the activity of all Zn-dependent HDACs) and selective-HDACis (specific for one or a few HDACs) and they were proven to be effective in inducing apoptosis, modifying protein expression and acting on therapy resistance. Here, we synthetized 150 nm-sized liposomes loaded with pan-HDACi Givinostat, both unfunctionalized and functionalized with mApoE that is a peptidic fragment already used for BBB crossing and tumor targeting. The anticancer activity of Givinostat, together with the expression of cholesterol uptake-related receptors, has been analyzed in classic 2D models. Moreover, cell viability was assessed using a 3D bioprinted construct made of chitosan and gelatin. In addition, pharmacokinetics and brain penetration have been investigated in healthy mice in comparison to the free drug, showing a significant increase in both parameters. These results indicate that Givinostat could be a good candidate for GBM treatment, also providing a co-treatment with already applied therapies. Further studies will be focused on the improvement of NPs using other functionalizations and other HDACis like the selective-HDAC6 ITF3756, on the exploitation of TnTs for drug delivery and on the investigation of HDACis as immunotherapeutic agents in GBM.

Il glioblastoma multiforme (GBM) è un astrocitoma di IV grado ed è il tumore più comune e aggressivo del sistema nervoso centrale (SNC). Il GBM è caratterizzato da una natura infiltrante, un’alta eterogeneità, aggressività e recidiva. Attualmente non ci sono terapie risolutive e il trattamento standard è basato sul protocollo di Stupp, che prevede chirurgia, radioterapia e cicli di chemioterapia con temozolomide (TMZ). Tuttavia, la resistenza alla terapia e il cosiddetto ‘cancer immune escape’ sono delle sfide molto importanti per i medici e gli scienziati. La nanomedicina ha ricevuto molta attenzione grazie alla sua versatilità di applicazione, che include l’attraversamento della barriera emato-encefalica (BBB) e la veicolazione di farmaci al sito bersaglio. Inoltre, la nanomedicina è stata applicata con successo nel campo dell’immunoterapia tumorale, per esempio utilizzando nanoparticelle (NPs) per il trasporto di farmaci, anticorpi monoclonali o acidi nucleici. Il razionale dietro l’immunoterapia è la stimolazione del sistema immunitario affinché reagisca contro il cancro, anche in tumori con scarsa risposta immunitaria come il GBM. Nel campo della terapia delle malattie cerebrali, la nanomedicina si è rivelata uno strumento eccellente per la veicolazione di farmaci, specialmente considerando che le cellule tumorali di GBM possono sfruttare delle strutture cellulari come i Tunneling nanotubes (TnTs) per scambiare organelli, materiale cellulare, fattori solubili, farmaci e persino NPs. Data questa premessa, i TnTs potrebbero essere sfruttati per impedire questa comunicazione cellulare (inibendo la loro formazione) oppure per diffondere i farmaci chemioterapici tra cellule diverse. Infine, negli ultimi anni gli inibitori delle istone deacetilasi (HDAC, HDACis) sono stati studiati come farmaci antitumorali in diversi tumori, compreso il GBM. Gli HDACis sono suddivisi in pan-HDACis (che diminuiscono l’attività di tutte le HDAC zinco-dipendenti) e in HDACis selettivi (specifici per una o poche HDAC) ed è stata provata la loro efficacia nell’induzione dell’apoptosi, nella modificazione dell’espressione proteica e nel contrasto alla chemioresistenza. In questo lavoro abbiamo sintetizzato liposomi di 150 nm di diametro con all’interno il pan-HDACi Givinostat, sia non funzionalizzati che funzionalizzati con mApoE, un frammento peptidico già utilizzato per l’attraversamento della BBB e per il targeting tumorale. L’attività antitumorale di Givinostat, insieme all’espressione di recettori correlati all’internalizzazione cellulare di colesterolo, è stata analizzata in classici modelli 2D. Inoltre, la vitalità cellulare è stata analizzata utilizzando un costrutto stampato in 3D composto di chitosano e gelatina. La farmacocinetica e la penetrazione del farmaco nel cervello sono state studiate in topi sani confrontandole con il farmaco libero, mostrando un aumento significativo di entrambi i parametri. Questi risultati indicano che Givinostat potrebbe essere un buon candidato per il trattamento del GBM, anche somministrandolo insieme ad altre terapie già in uso. Ulteriori studi saranno indirizzati verso il miglioramento delle NPs utilizzando altre funzionalizzazioni e altri HDACis, come ad esempio l’HDACi selettivo per l’HDAC6 ITF3756, e prenderanno in considerazione lo sfruttamento dei TnT per il trasporto di farmaci e l’utilizzo degli HDACis come agenti immunoterapeutici.

(2023). Design and validation of lipidic carriers for drug delivery in brain cancer therapy. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).

Design and validation of lipidic carriers for drug delivery in brain cancer therapy

TAIAROL, LORENZO
2023

Abstract

Glioblastoma multiforme (GBM) is a IV grade astrocytoma and it is the most common and aggressive tumor of the central nervous system (CNS). GBM is characterized by an infiltrative nature, high heterogeneity, aggressiveness, and recurrence. There are no curative treatments and the standard care is based on Stupp’s protocol, with surgery, radiotherapy and temozolomide (TMZ) chemotherapy. However, therapy resistance and cancer immune escape are important challenges for physicians and scientists. Nanomedicine gained a lot of attention given the versatility of its application, including the crossing of blood-brain barrier (BBB), specific targeted therapy and drug delivery. In addition, nanomedicine has been successfully applied in the field of cancer immunotherapy, for example using nanoparticles (NPs) for the delivery of drugs, monoclonal antibodies (mAbs) or nucleic acids. The rationale behind immunotherapy is to stimulate the immune system to react against cancer, even in tumors with scarce immune response like GBM. In the context of brain disease therapy, nanomedicine turned out to be an excellent tool also for drug delivery, especially considering that GBM cancer cells can exploit cellular structures like Tunneling nanotubes (TnTs) to exchange organelles, cellular material, soluble factors, drugs and even NPs. Given this information, TnTs could be exploited to prevent cellular communication (by inhibiting their formation) or to spread anticancer drugs among different cells. Finally, in the last years histone deacetylase (HDAC) inhibitors (HDACis) were investigated as anticancer drugs in many tumors, GBM included. HDACis are divided into pan-HDACi (that decrease the activity of all Zn-dependent HDACs) and selective-HDACis (specific for one or a few HDACs) and they were proven to be effective in inducing apoptosis, modifying protein expression and acting on therapy resistance. Here, we synthetized 150 nm-sized liposomes loaded with pan-HDACi Givinostat, both unfunctionalized and functionalized with mApoE that is a peptidic fragment already used for BBB crossing and tumor targeting. The anticancer activity of Givinostat, together with the expression of cholesterol uptake-related receptors, has been analyzed in classic 2D models. Moreover, cell viability was assessed using a 3D bioprinted construct made of chitosan and gelatin. In addition, pharmacokinetics and brain penetration have been investigated in healthy mice in comparison to the free drug, showing a significant increase in both parameters. These results indicate that Givinostat could be a good candidate for GBM treatment, also providing a co-treatment with already applied therapies. Further studies will be focused on the improvement of NPs using other functionalizations and other HDACis like the selective-HDAC6 ITF3756, on the exploitation of TnTs for drug delivery and on the investigation of HDACis as immunotherapeutic agents in GBM.
RE, FRANCESCA
Glioblastoma; Nanomedicina; Nanotubi; Liposomi; Givinostat
Glioblastoma; Nanomedicine; Nanotubes; Liposomes; Givinostat
BIO/10 - BIOCHIMICA
English
27-feb-2023
MEDICINA TRASLAZIONALE E MOLECOLARE - DIMET
35
2021/2022
open
(2023). Design and validation of lipidic carriers for drug delivery in brain cancer therapy. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_863701.pdf

accesso aperto

Descrizione: Tesi Lorenzo Taiarol
Tipologia di allegato: Doctoral thesis
Dimensione 30.48 MB
Formato Adobe PDF
30.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/405202
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact