We describe a special class of quasi-equilibrium problems in metric spaces and propose a novel simple threshold descent method for solving these problems. Due to the framework, the convergence of the method cannot be established with the usual convexity or generalized convexity assumptions. Under mild conditions, the iterative procedure gives solutions of the quasi-equilibrium problem. We apply this method to scalar and vector generalized quasi-equilibrium problems and to some classes of relative optimization problems.
Bianchi, M., Konnov, I., Pini, R. (2023). On a threshold descent method for quasi-equilibria. OPTIMIZATION LETTERS, 17(7), 1517-1531 [10.1007/s11590-023-01978-x].
On a threshold descent method for quasi-equilibria
Pini, R
2023
Abstract
We describe a special class of quasi-equilibrium problems in metric spaces and propose a novel simple threshold descent method for solving these problems. Due to the framework, the convergence of the method cannot be established with the usual convexity or generalized convexity assumptions. Under mild conditions, the iterative procedure gives solutions of the quasi-equilibrium problem. We apply this method to scalar and vector generalized quasi-equilibrium problems and to some classes of relative optimization problems.File | Dimensione | Formato | |
---|---|---|---|
Bianchi-2023-Optim Lett-VoR.pdf
Solo gestori archivio
Descrizione: versione pubblicata dalla rivista
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Bianchi-2023-Optim Lett-AAM.pdf
accesso aperto
Descrizione: Post-print
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Creative Commons
Dimensione
68.48 kB
Formato
Adobe PDF
|
68.48 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.