We describe a special class of quasi-equilibrium problems in metric spaces and propose a novel simple threshold descent method for solving these problems. Due to the framework, the convergence of the method cannot be established with the usual convexity or generalized convexity assumptions. Under mild conditions, the iterative procedure gives solutions of the quasi-equilibrium problem. We apply this method to scalar and vector generalized quasi-equilibrium problems and to some classes of relative optimization problems.

Bianchi, M., Konnov, I., Pini, R. (2023). On a threshold descent method for quasi-equilibria. OPTIMIZATION LETTERS, 17(7), 1517-1531 [10.1007/s11590-023-01978-x].

On a threshold descent method for quasi-equilibria

Pini, R
2023

Abstract

We describe a special class of quasi-equilibrium problems in metric spaces and propose a novel simple threshold descent method for solving these problems. Due to the framework, the convergence of the method cannot be established with the usual convexity or generalized convexity assumptions. Under mild conditions, the iterative procedure gives solutions of the quasi-equilibrium problem. We apply this method to scalar and vector generalized quasi-equilibrium problems and to some classes of relative optimization problems.
Articolo in rivista - Articolo scientifico
Brezis pseudomonotonicity; Convergence; Existence results; Quasi-equilibrium problems; Threshold descent method;
English
4-feb-2023
2023
17
7
1517
1531
partially_open
Bianchi, M., Konnov, I., Pini, R. (2023). On a threshold descent method for quasi-equilibria. OPTIMIZATION LETTERS, 17(7), 1517-1531 [10.1007/s11590-023-01978-x].
File in questo prodotto:
File Dimensione Formato  
Bianchi-2023-Optim Lett-VoR.pdf

Solo gestori archivio

Descrizione: versione pubblicata dalla rivista
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Bianchi-2023-Optim Lett-AAM.pdf

accesso aperto

Descrizione: Post-print
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Creative Commons
Dimensione 68.48 kB
Formato Adobe PDF
68.48 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/405115
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact