In the last three decades Mobile Telecommunication (TLC) electronics has undergone a great improvement, this limited branch of electronics proved to be one of the major driving motor in the development of the new Complementary Metal-Oxide-Semiconductor (CMOS) technologies. People all around the world ask for extremely performing portable devices, faster, more reliable, low power consuming and with impressive memory capability. This situation has become extremely favorable for the development of high performance digital devices which are able to reach speed and memory capability previously unbelievable. Also analog building blocks must be integrated in deeply down-scaled node, in order to adapt with digital integrated circuits (ICs). First task of this thesis work was the implementation and measurement of different integrated circuits in two deep sub-micron technology nodes as 28nm bulk-CMOS and 16nm FinFET (Fin Field Effect Transistor). In particular the second one of these introduces novelty about the structure of transistor used to implement the circuits. Each circuit created faces various difficulties due to the particular behaviour of such advanced technologies, in particular in terms of low intrinsic gain and limited signal swing as consequence of low supply voltage. I worked in FinFET16 project with the main task to realize and validate the layout of a 4^th Order Fully-Differential Super-Source-Follower Analog Filter. After measurements the filter achieves 15.1 dBm in-band IIP3 at 10 MHz & 11 MHz input tones, with 968 µW power consumption from a single 1V supply voltage. In-band integrated noise is 85.78 µVrms for an overall Figure-of-Merit of 162.8 dB (j-1) which outperforms analog filters State-of-the-Art. I also collaborated as layoutist in other two projects realized with 28nm CMOS technology. The first one was the PRIN Brain28nm project that concerns the implementation of a neural signal acquisition chain. The goal of this work was the realization of a biosensor that uses the EOMOSFET structure with the 28nm CMOS technological node. The use of this technology makes this circuit more competitive when compared to the biosensors present in literature. The last one was Pignoletto project realized in collaboration with RedCat Devices. It concerns the implementation and theorical analysis of two different typologies of ICs measured under radiation: two digital cells and one Analog to Digital Converter. Under radiation measurements will be realize in January 2023. In the second part of my third year I started a work activity in Pavia site of AMS-Osram S.r.l as validation engineer. This company is a world leader in the field of optical sensors and the application of the latter in the automotive sector. The project I am carrying out involves the creation of a validation setup for an IC, in order to verify the correct performance of the multiple functions for which this chip is designed. A first analysis, useful for the preliminary study for the realization of the setup, was carried out through the use of an FPGA (Cyclone1000) on which the code that realizes the logic part of the IC was loaded using the Quartus software. Once the correct operation of the FPGA was validated, through the use of an STM32 micro-controller, various configurations and functions have been tested and correctly validated. The final purpose of this activity, which will continue in the coming months, is the validation of some communication methods between different devices, fundamental for the interface of the IC with automotive standards, and the creation of an updated version of the FPGA code and its subsequent verification. This activity appears to be a novelty in the field of integrated circuit design as it would allow to highlight problems and malfunctions of the circuit.
Negli ultimi tre decenni l'elettronica delle telecomunicazioni mobili ha subito un grande miglioramento, questo ramo dell'elettronica si è rivelato una delle principali forze trainanti nello sviluppo delle nuove tecnologie CMOS. in tutto il mondo richiedono dispositivi portatili estremamente performanti, più veloci, più affidabili, a basso consumo energetico. Questa situazione è diventata estremamente favorevole per lo sviluppo di dispositivi digitali ad alte prestazioni in grado di raggiungere velocità e capacità di memoria prima incredibili. Anche i blocchi di costruzione analogici devono essere integrati in nodi profondamente ridimensionati, al fine di adattarsi ai circuiti integrati digitali . Il primo compito di questo lavoro di tesi è stata l'implementazione e la misurazione di diversi circuiti integrati in due nodi tecnologici profondamente scalati come CMOS bulk a 28 nm e FinFET (Fin Field Effect Transistor) a 16 nm. In particolare, il secondo di questi introduce novità sulla struttura del transistor utilizzato per implementare i circuiti. Ciascun circuito realizzato incontra diverse difficoltà dovute al particolare comportamento di tali tecnologie avanzate, in particolare in termini di basso intrinsic gain e basso output voltage swing come conseguenza della bassa tensione di alimentazione. Ho lavorato nel progetto FinFET16 con il compito principale di realizzare e validare il layout di un filtro analogico Super-Source-Follower fully-differential del 4° ordine. Dopo le misurazioni, il filtro raggiunge 15,1 dBm IIP3 in banda a 10 MHz e toni di ingresso 11 MHz, con un consumo energetico di 968 µW da una singola tensione di alimentazione da 1 V. Il rumore integrato in banda è 85,78 µVrms per una figura di merito complessiva di 162,8 dB (j-1) che supera lo stato dell'arte dei filtri analogici. Ho anche collaborato come layoutista in altri due progetti realizzati con tecnologia CMOS a 28 nm. Il primo è stato il progetto PRIN Brain28nm che riguarda l'implementazione di una catena di acquisizione del segnale neurale. L'obiettivo di questo lavoro era la realizzazione di un biosensore che utilizza la struttura EOMOSFET con il nodo tecnologico CMOS a 28 nm. L'utilizzo di questa tecnologia rende questo circuito più competitivo rispetto ai biosensori presenti in letteratura. L'ultimo progetto è stato il progetto Pignoletto realizzato in collaborazione con RedCat Devices. Esso riguarda l'implementazione e l'analisi teorica di due diverse tipologie di circuiti integrati misurati sotto irraggiamento: due celle digitali e un convertitore da analogico a digitale. Nella seconda parte del mio terzo anno ho iniziato un'attività lavorativa presso la sede di Pavia della AMS come validation engineer. Questa azienda è leader mondiale nel campo dell'Automotive Interior Lightning. ll progetto che sto portando avanti prevede la realizzazione di un setup di validazione per un IC, al fine di verificare il corretto svolgimento delle molteplici funzioni per le quali questo chip è progettato. Una prima analisi, utile allo studio preliminare per la realizzazione del setup, è stata effettuata attraverso l'utilizzo di un FPGA su cui è stato caricato il codice che realizza la parte logica dell'IC utilizzando il software Quartus. Una volta validato il corretto funzionamento dell'FPGA, attraverso l'utilizzo di un microcontrollore STM32, sono state testate e correttamente validate diverse configurazioni e funzioni. Lo scopo finale di questa attività, che proseguirà nei prossimi mesi, è la validazione di alcune modalità di comunicazione tra diversi dispositivi, fondamentali per l'interfaccia dell'IC con gli standard automotive, e la creazione di una versione aggiornata del codice FPGA e della sua successiva verifica. Questa attività sembra essere una novità nel campo del design di circuiti integrati perché potrebbe permettere di evidenziare eventuali problemi.
(2023). Implementation and Validation Methods for Electronic Integrated Circuits and Devices. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).
Implementation and Validation Methods for Electronic Integrated Circuits and Devices
ROTA, LUCIANO
2023
Abstract
In the last three decades Mobile Telecommunication (TLC) electronics has undergone a great improvement, this limited branch of electronics proved to be one of the major driving motor in the development of the new Complementary Metal-Oxide-Semiconductor (CMOS) technologies. People all around the world ask for extremely performing portable devices, faster, more reliable, low power consuming and with impressive memory capability. This situation has become extremely favorable for the development of high performance digital devices which are able to reach speed and memory capability previously unbelievable. Also analog building blocks must be integrated in deeply down-scaled node, in order to adapt with digital integrated circuits (ICs). First task of this thesis work was the implementation and measurement of different integrated circuits in two deep sub-micron technology nodes as 28nm bulk-CMOS and 16nm FinFET (Fin Field Effect Transistor). In particular the second one of these introduces novelty about the structure of transistor used to implement the circuits. Each circuit created faces various difficulties due to the particular behaviour of such advanced technologies, in particular in terms of low intrinsic gain and limited signal swing as consequence of low supply voltage. I worked in FinFET16 project with the main task to realize and validate the layout of a 4^th Order Fully-Differential Super-Source-Follower Analog Filter. After measurements the filter achieves 15.1 dBm in-band IIP3 at 10 MHz & 11 MHz input tones, with 968 µW power consumption from a single 1V supply voltage. In-band integrated noise is 85.78 µVrms for an overall Figure-of-Merit of 162.8 dB (j-1) which outperforms analog filters State-of-the-Art. I also collaborated as layoutist in other two projects realized with 28nm CMOS technology. The first one was the PRIN Brain28nm project that concerns the implementation of a neural signal acquisition chain. The goal of this work was the realization of a biosensor that uses the EOMOSFET structure with the 28nm CMOS technological node. The use of this technology makes this circuit more competitive when compared to the biosensors present in literature. The last one was Pignoletto project realized in collaboration with RedCat Devices. It concerns the implementation and theorical analysis of two different typologies of ICs measured under radiation: two digital cells and one Analog to Digital Converter. Under radiation measurements will be realize in January 2023. In the second part of my third year I started a work activity in Pavia site of AMS-Osram S.r.l as validation engineer. This company is a world leader in the field of optical sensors and the application of the latter in the automotive sector. The project I am carrying out involves the creation of a validation setup for an IC, in order to verify the correct performance of the multiple functions for which this chip is designed. A first analysis, useful for the preliminary study for the realization of the setup, was carried out through the use of an FPGA (Cyclone1000) on which the code that realizes the logic part of the IC was loaded using the Quartus software. Once the correct operation of the FPGA was validated, through the use of an STM32 micro-controller, various configurations and functions have been tested and correctly validated. The final purpose of this activity, which will continue in the coming months, is the validation of some communication methods between different devices, fundamental for the interface of the IC with automotive standards, and the creation of an updated version of the FPGA code and its subsequent verification. This activity appears to be a novelty in the field of integrated circuit design as it would allow to highlight problems and malfunctions of the circuit.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_751941.pdf
embargo fino al 28/02/2026
Descrizione: Implementation and Validation Methods for Electronic Integrated Circuits and Devices
Tipologia di allegato:
Doctoral thesis
Dimensione
31.78 MB
Formato
Adobe PDF
|
31.78 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.