Vaccines have been a breakthrough in medicine. Since their introduction in 1798 by Jenner, vaccines dramatically lowered mortality rate, extended average life expectancy and reduced incidence of severe diseases such as tetanus, polio, measles and others, while totally eradicating smallpox. After centuries of improvements, vaccines evolved: from attenuated live vaccines, having high efficacy rate but low safety profile as they used alive pathogens, to modern subunit or nucleic acid vaccines. The latter are much safer than attenuated vaccines, as the possibility of adverse events is extremely lower, but without the proper formulation they’re also less efficient in eliciting a good immune memory, as they lack the immunostimulatory properties of a whole pathogen cell. Indeed, modern vaccines contains far less antigens than in the past, therefore, to reach high efficacy rates, the presence of adjuvants is required in vaccine formulation. Vaccine adjuvants are chemical or biological compounds able to induce a proper immune response which enhances antigens ability to generate a good immune memory, so they can rise the overall efficiency of a vaccine, while maintaining a low risk profile. For decades, the only vaccine adjuvant approved for human use has been Alum, a mixed salt formed by aluminium hydroxide and aluminium phosphate In recent decades, however, increased interest on this topic brought to approval of a handful of adjuvants such MPLA, a Toll-Like Receptor 4 (TLR4) agonist. TLR4 is a pivotal protein in innate immunity: it is the human sensor for bacterial presence, due to its ability to bind lipopolysaccharide (LPS), a fundamental component of bacterial outer membrane. Upon binding, TLR4 dimerizes, triggering an intracellular kinase cascade which kickstarts the inflammatory process through the release of cytokines. These cytokines also help shaping the adaptive immune response, directing it toward a Th1 or Th2 response and priming memory B cells. For its centrality in both innate and adaptive immunity, TLR4 is a prime target for vaccine adjuvants, such as MPLA. MPLA is a highly detoxified version of Salmonella Minnesota LPS that has been approved by FDA for human use as a vaccine adjuvant in 2009, and it has been included in several common vaccines since then (as an example, the HPV vaccine Cervarix). However, MPLA chemical structure makes it difficult to synthetise, which makes it extremely expensive: a fully synthetic MPLA can cost up to 200 EUR/mg. The aim of this thesis is therefore to rationally design, chemically synthetise and biologically characterize new, simpler and cheaper TLR4 agonist as vaccine adjuvants, starting from MPLA structure. The new compounds, strongly amphiphilic, were then modified to make them more hydrophilic, which resulted in higher solubility and biological activity, derived probably from a different mechanism of action, which is being assessed in detail. The compounds presented in this thesis can be synthetized in few steps, thus containing the costs, but they retain most of the activity of MPLA, both in vitro and vivo. Therefore, both compounds have been patented, published and are now being acquired by a pharmaceutical company, Croda.

I vaccini hanno rappresentato una svolta nella medicina. Dalla loro introduzione da parte di jenner nel 1798, i vaccini hanno abbassato drammaticamente il tasso di mortalità, esteso l’aspettativa di vita media e ridotto l’incidenza di malattie come tetano, polio, morbillo e altre, ed hanno portato all’eradicazione del vaiolo. Dopo secoli di miglioramenti, i vaccini si sono evoluti: dai vaccini attenuati, molto efficaci ma non troppo sicuri in quanto usavano patogeni vivi, fino ai moderni vaccini a sottounità od ad acidi nucleici. Questi ultimi sono molto più sicuri dei vaccini attenuati, poiché la possibilità di effetti collaterali è estremamente più bassa, ma senza una formulazione adeguata sono anche meno efficienti nel portare ad una buona memoria immunologica, poiché mancano delle proprietà immunostimolatorie di un patogeno intero. In effetti, i vaccini moderni contengono molti meno antigeni che in passato, pertanto, per arrivare ad un buon tasso di efficaca, è necessaria la presenza di adiuvanti nella loro formulazione. Gli adiuvanti vaccinali sono composti chimici o biologici che inducano una risposta immunitaria tale da migliorare la capacità di un antigene di generare una buona memoria immunologica, così da accrescere l’efficacia di un vaccino mantenendo un basso rischio. Per decenni, l’unico adiuvante vaccinale approvato per l’uso umano è stato l’Alum, una miscela di alluminio idrossido ed alluminio fosfato. Negli ultimi anni, tuttavia, c’è stato un maggiore interesse in questo ambito, che ha portato all’approvazione di un certo numero di adiuvanti, fra cui l’MPLA, un agonista del Toll-Like Receptor 4 (TLR4). Il TLR4 è una proteina fondamentale nel processo dell’immunità innata: è il sensore umano della presenza batterica, grazie alla sua abilità di legare il lipopolisaccaride (LPS), un componente fondamentale della membrana batterica esterna. Dopo il legame, il TLR4 dimerizza, provocando una cascata di chinasi intracellulare che a sua volta porta all’infiammazione tramite il rilascio di citochine. Queste citochine aiutano nel formare la risposta immunitaria innata, dirigendola verso una risposta TH1 o Th2 e preparando le cellule B memoria. Per via della sua centralità sia nell’immunità innata sia in quella adattativa, il TLR4 è un bersaglio desiderabile per la creazione di nuovi adiuvanti vaccinali, come l’MPLA. L’MPLA è una versione molto detossificata dell’LPS di Salmonella minnesota che è stato approvato per l’uso umano da parte dell’FDA nel 2009, ed è da allora compreso nella formulazione di diversi vaccini (per esempio il vaccino anti-HPV Cervarix). Tuttavia, la struttura chimica dell’MPLA lo rende difficile da sintetizzare, il che lo rende estrememante costoso: la versione interamente sintetica può costare fino a 200 EUR7mg. Lo scopo di questa tesi è pertanto di progettare razionalmente, sintetizzare chimicamente e caratterizzare biologicamente in vitro ed in vivo nuovi più semplici e più economici agonisti del TLR4 come adiuvanti vaccinali, partendo dalla struttura dell’MPLA. I nuovi composti, fortemente anfifilici, sono poi stati modificati per renderli più idrofilici, che ha portato ad una maggiore solubilità ed attività biologica, proveniente da un diverso meccanismo d’azione che sta venendo studiato nel dettaglio. I composti presentati in questa tesi possono essere sintetizzati in poche reazioni, contenendo i costi, ma mantengono l’attività biologica dell’MPLA, sia in vivo sia in vitro. Pertanto, i composti sono stati brevettati, pubblicati e stanno venendo acquisiti da una multinazionale farmaceutica, Croda.

(2023). Synthesis and Biological Characterization of TLR4 Agonists as Innovative Vaccine Adjuvants. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).

Synthesis and Biological Characterization of TLR4 Agonists as Innovative Vaccine Adjuvants

ROMERIO, ALESSIO
2023

Abstract

Vaccines have been a breakthrough in medicine. Since their introduction in 1798 by Jenner, vaccines dramatically lowered mortality rate, extended average life expectancy and reduced incidence of severe diseases such as tetanus, polio, measles and others, while totally eradicating smallpox. After centuries of improvements, vaccines evolved: from attenuated live vaccines, having high efficacy rate but low safety profile as they used alive pathogens, to modern subunit or nucleic acid vaccines. The latter are much safer than attenuated vaccines, as the possibility of adverse events is extremely lower, but without the proper formulation they’re also less efficient in eliciting a good immune memory, as they lack the immunostimulatory properties of a whole pathogen cell. Indeed, modern vaccines contains far less antigens than in the past, therefore, to reach high efficacy rates, the presence of adjuvants is required in vaccine formulation. Vaccine adjuvants are chemical or biological compounds able to induce a proper immune response which enhances antigens ability to generate a good immune memory, so they can rise the overall efficiency of a vaccine, while maintaining a low risk profile. For decades, the only vaccine adjuvant approved for human use has been Alum, a mixed salt formed by aluminium hydroxide and aluminium phosphate In recent decades, however, increased interest on this topic brought to approval of a handful of adjuvants such MPLA, a Toll-Like Receptor 4 (TLR4) agonist. TLR4 is a pivotal protein in innate immunity: it is the human sensor for bacterial presence, due to its ability to bind lipopolysaccharide (LPS), a fundamental component of bacterial outer membrane. Upon binding, TLR4 dimerizes, triggering an intracellular kinase cascade which kickstarts the inflammatory process through the release of cytokines. These cytokines also help shaping the adaptive immune response, directing it toward a Th1 or Th2 response and priming memory B cells. For its centrality in both innate and adaptive immunity, TLR4 is a prime target for vaccine adjuvants, such as MPLA. MPLA is a highly detoxified version of Salmonella Minnesota LPS that has been approved by FDA for human use as a vaccine adjuvant in 2009, and it has been included in several common vaccines since then (as an example, the HPV vaccine Cervarix). However, MPLA chemical structure makes it difficult to synthetise, which makes it extremely expensive: a fully synthetic MPLA can cost up to 200 EUR/mg. The aim of this thesis is therefore to rationally design, chemically synthetise and biologically characterize new, simpler and cheaper TLR4 agonist as vaccine adjuvants, starting from MPLA structure. The new compounds, strongly amphiphilic, were then modified to make them more hydrophilic, which resulted in higher solubility and biological activity, derived probably from a different mechanism of action, which is being assessed in detail. The compounds presented in this thesis can be synthetized in few steps, thus containing the costs, but they retain most of the activity of MPLA, both in vitro and vivo. Therefore, both compounds have been patented, published and are now being acquired by a pharmaceutical company, Croda.
MALUSA', MARCO GIOVANNI
PERI, FRANCESCO
Vaccini; Adiuvanti Vaccinali; Immunità; Toll-Like Receptor 4; Sintesi Organica
Vaccines; Vaccine Adjuvants; Immunity; Toll-Like Receptor 4; Organic Synthesis
CHIM/08 - CHIMICA FARMACEUTICA
English
30-gen-2023
SCIENZE CHIMICHE, GEOLOGICHE E AMBIENTALI
35
2021/2022
open
(2023). Synthesis and Biological Characterization of TLR4 Agonists as Innovative Vaccine Adjuvants. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_794964.pdf

accesso aperto

Descrizione: Tesi di Romerio Alessio - 794964
Tipologia di allegato: Doctoral thesis
Dimensione 14.78 MB
Formato Adobe PDF
14.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/402445
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact