Considering that the first structured definition of biomaterials was given only 50 years ago and that 100 years ago biomaterials, as we think about them today, did not even exist, we could claim they have been a crucial point in scientific advances, as they revolutionized many aspects of biomedicine. Thinking about the state-of-the-art of many fields in medicine and biotechnologies, biomaterials are widely employed. Many aspects of clinical medicine, including chronic conditions treatment, drug delivery, medical device manufacturing, and tissue engineering would not be the same without all the recent advances in the development of this class of materials. The wide range of applications they can be designed for, the unique characteristics, and the possibility to tune them and adapt the final construct for an extended variety of cases and purposes ensure a still high hype around their development. Even though much progress has been made, the possibility to implement new aspects and technologies and obtain more smart and complex products makes biomaterials valid candidates to face opening challenges in the treatment of multiple pathological conditions and expand the boundaries of modern medicine. In this thesis, the chemical derivatization and formulation of polymers of both synthetic and natural origin for multiple applications are proposed. The combination of different classes of polymers and so of their properties, and the exploitation of the concept of multivalency, underlie all the presented projects. Hence, we show the development of multimodal polymeric nanoparticles, based on a combination of poly-γ-glutamic acid (γ-PGA) and chitosan, for the imaging of porcine pancreatic islet and induced pluripotent stem cell-derived β-cells. This kind of tool might be crucial in the clinical translation of type 1 diabetes regenerative therapies involving bio-artificial pancreas, since it allows the imaging of specific cell types with high sensitivity and therefore the monitoring of β cells viability inside this kind of device. The proposed nanoparticles are highly versatile, and by decorating different targeting and detecting agents it is possible to develop nanotools suitable for monitoring of survival, engraftment, proliferation, function, and whole-body distribution of the cellular transplants and the development and validation of the application of state-of-the-art imaging technologies facilitating the provision of new regenerative therapies to preclinical large animal models and patients. Furthermore, a linear polymeric scaffold based on a synthetic polymer conjugated to an analogue of natural ligand of pancreatic β-cells (exendin-4, Ex4) has been developed, and can lead to new therapeutics and diagnostics agents. Indeed, the polymer displays more available sites for subsequent conjugation of other entities. The synthesized compounds may function per se as Ex4 controlled release carriers. Another polymeric conjugate, together with a library of mannoside-based small molecules, has been designed and studied for the treatment of Pseudomonas Aeruginosa bacterium. In this case, chitosan has been selected as polymeric component, exploiting its mild antimicrobial activity and its capability to serve as a linear scaffold and combining it with the lectin B targeting capability of mannoside-derived sulfonates and sulfoximines. Lastly, a hybrid hydrogel made of hyaluronic acid and gelatin has been developed for 3D bioprinting with U87 cells. The proposed hydrogel is chemically crosslinked and resembles in its features the natural extracellular matrix (ECM) brain composition and characteristics This kind of material may serve as a model of glioblastoma for 3D cell culture and can be used for more reliable and convenient antitumoral drug screening routes, considering the high malignancy, resistance towards antitumoral treatments and the high recurrence rate.

Considerando che la prima definizione strutturata di biomateriali è stata formulata solo 50 anni fa, e che 100 anni fa i biomateriali come li conosciamo ora non esistevano nemmeno, possiamo affermare che rappresentano un punto cruciale del progresso scientifico, rivoluzionando la biomedicina. Molti aspetti della medicina clinica, compreso il trattamento di patologie croniche, il delivery di piccole molecole, la produzione di dispositivi medici e l’ingegneria tissutale non sarebbero gli stessi senza i recenti sviluppi di questa classe di materiali. L’ampia gamma di applicazioni per cui possono essere progettati, le caratteristiche uniche e la possibilità di adattare il costrutto finale ad un’ampia varietà di scopi garantiscono un interesse ancora molto elevato attorno al loro sviluppo. La possibilità di implementare nuovi aspetti e tecnologie e ottenere prodotti più complessi rende i biomateriali validi candidati per affrontare delle sfide aperte nel trattamento di molteplici condizioni patologiche ed espandere i confini della medicina moderna. In questa tesi, viene proposta, per molteplici applicazioni, la derivatizzazione chimica e la formulazione di polimeri sia di origine sintetica sia naturale. La combinazione di diverse classi di polimeri e le loro proprietà, oltre allo sfruttamento del concetto di multivalenza, sono alla base di tutti i progetti presentati. Viene descritto lo sviluppo di nanoparticelle polimeriche multimodali, basate su una combinazione di acido poli-γ-glutammico e chitosano, per la visualizzazione delle isole pancreatiche e delle cellule β derivate da cellule staminali pluripotenti indotte. Questo tipo di strumento potrebbe essere cruciale nella trasposizione in clinica di terapie rigenerative per il diabete di tipo 1, basate sull’utilizzo di pancreas bio-artificiali, dal momento che consente l’imaging di specifiche cellule ad alta sensibilità e quindi il monitoraggio della vitalità all’interno di questi tipi di dispositivi. Queste nanoparticelle sono versatili e, decorandole con diversi agenti di targeting e detecting, è possibile sviluppare nanomateriali adatti al monitoraggio della sopravvivenza, attecchimento, proliferazione e funzione di trapianti cellulari e lo sviluppo e validazione dell’applicazione di tecnologie di imaging all’avanguardia che facilitano l’impiego di nuove terapie rigenerative su modelli preclinici con animali di grandi dimensioni e su pazienti. Inoltre, è stata sviluppato uno scaffold polimerico lineare basata su un polimero sintetico coniugato con un analogo del naturale delle cellule β pancreatiche (exendina-4, Ex4), e può portare a nuovi agenti terapeutici o di diagnostica. Infatti, il polimero presenta più siti disponibili per successiva coniugazione di ulteriori oggetti. I prodotti sintetizzati possono essere utilizzati anche come vettori per il rilascio controllato di Ex4. Un altro coniugato polimerico è stato sviluppato e studiato, in concomitanza con una libreria di piccole molecole basate sul mannosio, per il trattamento del batterio Pseudomonas Aeruginosa. In questo caso, il chitosano è stato scelto come componente polimerica, sfruttando la sua tenue attività antibatterica e la possibilità di essere usato come scaffold, combinato con la capacità di interagire con LecB di solfonati e solfossimmine derivati dal mannosio, che sono stati coniugati al polimero. Infine, un idrogelo ibrido composto da acido ialuronico e gelatina è stato sviluppato per la biostampa 3D con cellule U87. L’idrogelo proposto è reticolato chimicamente e ricorda con le sue specificità la matrice extracellulare naturale cerebrale in composizione e caratteristiche. Questo tipo di materiale può servire come modello 3D di glioblastoma e può essere utilizzato per uno screening più affidabile e conveniente di farmaci antitumorali, anche considerando l’elevata malignità, resistenza verso trattamenti antitumorali e alto tasso di ricorrenza del tumore.

(2023). Development of Biomaterials for Translational Medicine Applications: Pancreatic β-cells Imaging, Pseudomonas Aeruginosa Treatment, Tissue Engineering. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).

Development of Biomaterials for Translational Medicine Applications: Pancreatic β-cells Imaging, Pseudomonas Aeruginosa Treatment, Tissue Engineering

ROSSI, LORENZO
2023

Abstract

Considering that the first structured definition of biomaterials was given only 50 years ago and that 100 years ago biomaterials, as we think about them today, did not even exist, we could claim they have been a crucial point in scientific advances, as they revolutionized many aspects of biomedicine. Thinking about the state-of-the-art of many fields in medicine and biotechnologies, biomaterials are widely employed. Many aspects of clinical medicine, including chronic conditions treatment, drug delivery, medical device manufacturing, and tissue engineering would not be the same without all the recent advances in the development of this class of materials. The wide range of applications they can be designed for, the unique characteristics, and the possibility to tune them and adapt the final construct for an extended variety of cases and purposes ensure a still high hype around their development. Even though much progress has been made, the possibility to implement new aspects and technologies and obtain more smart and complex products makes biomaterials valid candidates to face opening challenges in the treatment of multiple pathological conditions and expand the boundaries of modern medicine. In this thesis, the chemical derivatization and formulation of polymers of both synthetic and natural origin for multiple applications are proposed. The combination of different classes of polymers and so of their properties, and the exploitation of the concept of multivalency, underlie all the presented projects. Hence, we show the development of multimodal polymeric nanoparticles, based on a combination of poly-γ-glutamic acid (γ-PGA) and chitosan, for the imaging of porcine pancreatic islet and induced pluripotent stem cell-derived β-cells. This kind of tool might be crucial in the clinical translation of type 1 diabetes regenerative therapies involving bio-artificial pancreas, since it allows the imaging of specific cell types with high sensitivity and therefore the monitoring of β cells viability inside this kind of device. The proposed nanoparticles are highly versatile, and by decorating different targeting and detecting agents it is possible to develop nanotools suitable for monitoring of survival, engraftment, proliferation, function, and whole-body distribution of the cellular transplants and the development and validation of the application of state-of-the-art imaging technologies facilitating the provision of new regenerative therapies to preclinical large animal models and patients. Furthermore, a linear polymeric scaffold based on a synthetic polymer conjugated to an analogue of natural ligand of pancreatic β-cells (exendin-4, Ex4) has been developed, and can lead to new therapeutics and diagnostics agents. Indeed, the polymer displays more available sites for subsequent conjugation of other entities. The synthesized compounds may function per se as Ex4 controlled release carriers. Another polymeric conjugate, together with a library of mannoside-based small molecules, has been designed and studied for the treatment of Pseudomonas Aeruginosa bacterium. In this case, chitosan has been selected as polymeric component, exploiting its mild antimicrobial activity and its capability to serve as a linear scaffold and combining it with the lectin B targeting capability of mannoside-derived sulfonates and sulfoximines. Lastly, a hybrid hydrogel made of hyaluronic acid and gelatin has been developed for 3D bioprinting with U87 cells. The proposed hydrogel is chemically crosslinked and resembles in its features the natural extracellular matrix (ECM) brain composition and characteristics This kind of material may serve as a model of glioblastoma for 3D cell culture and can be used for more reliable and convenient antitumoral drug screening routes, considering the high malignancy, resistance towards antitumoral treatments and the high recurrence rate.
NICOTRA, FRANCESCO
RUSSO, LAURA
Biomateriali; Diabete tipo 1; Antibatterico; Ingegneria Tissutale; Multivalenza
Biomaterials; Type 1 Diabetes; Antibacterial; Tissue Engineering; Multivalency
CHIM/06 - CHIMICA ORGANICA
Italian
20-gen-2023
TECNOLOGIE CONVERGENTI PER I SISTEMI BIOMOLECOLARI (TeCSBi)
35
2021/2022
embargoed_20260120
(2023). Development of Biomaterials for Translational Medicine Applications: Pancreatic β-cells Imaging, Pseudomonas Aeruginosa Treatment, Tissue Engineering. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_793624.pdf

embargo fino al 20/01/2026

Descrizione: Tesi Rossi Lorenzo 793624
Tipologia di allegato: Doctoral thesis
Dimensione 14.56 MB
Formato Adobe PDF
14.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/402361
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact