In this paper, we propose an unsupervised method for hyperspectral remote sensing image segmentation. The method exploits the mean-shift clustering algorithm that takes as input a preliminary hyperspectral superpixels segmentation together with the spectral pixel information. The proposed method does not require the number of segmentation classes as input parameter, and it does not exploit any a-priori knowledge about the type of land-cover or land-use to be segmented (e.g. water, vegetation, building etc.). Experiments on Salinas, SalinasA, Pavia Center and Pavia University datasets are carried out. Performance are measured in terms of normalized mutual information, adjusted Rand index and F1-score. Results demonstrate the validity of the proposed method in comparison with the state of the art.

Barbato, M., Napoletano, P., Piccoli, F., Schettini, R. (2022). Unsupervised segmentation of hyperspectral remote sensing images with superpixels. REMOTE SENSING APPLICATIONS, 28 [10.1016/j.rsase.2022.100823].

Unsupervised segmentation of hyperspectral remote sensing images with superpixels

Barbato M. P.
;
Napoletano P.;Piccoli F.;Schettini R.
2022

Abstract

In this paper, we propose an unsupervised method for hyperspectral remote sensing image segmentation. The method exploits the mean-shift clustering algorithm that takes as input a preliminary hyperspectral superpixels segmentation together with the spectral pixel information. The proposed method does not require the number of segmentation classes as input parameter, and it does not exploit any a-priori knowledge about the type of land-cover or land-use to be segmented (e.g. water, vegetation, building etc.). Experiments on Salinas, SalinasA, Pavia Center and Pavia University datasets are carried out. Performance are measured in terms of normalized mutual information, adjusted Rand index and F1-score. Results demonstrate the validity of the proposed method in comparison with the state of the art.
Articolo in rivista - Articolo scientifico
Hyperspectral images; Remote sensing; Superpixel segmentation; Unsupervised segmentation;
English
10-ago-2022
2022
28
100823
partially_open
Barbato, M., Napoletano, P., Piccoli, F., Schettini, R. (2022). Unsupervised segmentation of hyperspectral remote sensing images with superpixels. REMOTE SENSING APPLICATIONS, 28 [10.1016/j.rsase.2022.100823].
File in questo prodotto:
File Dimensione Formato  
Barbato-2022-RSASE-VoR.pdf

Solo gestori archivio

Descrizione: Research Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 4.39 MB
Formato Adobe PDF
4.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Barbato-2022-RSASE-preprint.pdf

accesso aperto

Descrizione: Research Article
Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Altro
Dimensione 2.72 MB
Formato Adobe PDF
2.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/400805
Citazioni
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
Social impact