The minimization of a multiobjective Lagrangian with non-constant discount is studied. The problem is embedded into a set-valued framework and a corresponding definition of the value function is given. Bellman's optimality principle and Hopf-Lax formula are derived. The value function is shown to be a solution of a set-valued Hamilton-Jacobi equation.

Visetti, D. (2023). The Hopf-Lax formula for multiobjective costs with non-constant discount via set optimization. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 519(2 (15 March 2023)) [10.1016/j.jmaa.2022.126828].

The Hopf-Lax formula for multiobjective costs with non-constant discount via set optimization

Visetti D.
Primo
2023

Abstract

The minimization of a multiobjective Lagrangian with non-constant discount is studied. The problem is embedded into a set-valued framework and a corresponding definition of the value function is given. Bellman's optimality principle and Hopf-Lax formula are derived. The value function is shown to be a solution of a set-valued Hamilton-Jacobi equation.
Articolo in rivista - Articolo scientifico
Bellman's principle; Discount factor; Hamilton-Jacobi-Bellman equation; Hopf-Lax formula; Multicriteria calculus of variations; Value function;
English
11-nov-2022
2023
519
2 (15 March 2023)
126828
reserved
Visetti, D. (2023). The Hopf-Lax formula for multiobjective costs with non-constant discount via set optimization. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 519(2 (15 March 2023)) [10.1016/j.jmaa.2022.126828].
File in questo prodotto:
File Dimensione Formato  
Visetti-2023-J Mathematical Analysis Applications-VoR.pdf

Solo gestori archivio

Descrizione: Research Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 394.15 kB
Formato Adobe PDF
394.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/397518
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact