In this paper, we generalize the Givental theory for Frobenius manifolds and cohomological field theories to flat F-manifolds and F-cohomological field theories. In particular, we define a notion of Givental cone for flat F-manifolds, and we provide a generalization of the Givental group as a matrix loop group acting on them. We show that this action is transitive on semisimple flat F-manifolds. We then extend this action to F-cohomological field theories in all genera. We show that, given a semisimple flat F-manifold and a Givental group element connecting it to the constant flat F-manifold at its origin, one can construct a family of F-CohFTs in all genera, parameterized by a vector in the associative algebra at the origin, whose genus 0 part is the given flat F-manifold. If the flat F-manifold is homogeneous, then the associated family of F-CohFTs contains a subfamily of homogeneous F-CohFTs. However, unlike in the case of Frobenius manifolds and CohFTs, these homogeneous F-CohFTs can have different conformal dimensions, which are determined by the properties of a certain metric associated to the flat F-manifold.

Arsie, A., Buryak, A., Lorenzoni, P., Rossi, P. (2023). Semisimple Flat F-Manifolds in Higher Genus. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 397(1), 141-197 [10.1007/s00220-022-04450-6].

Semisimple Flat F-Manifolds in Higher Genus

Lorenzoni, Paolo;
2023

Abstract

In this paper, we generalize the Givental theory for Frobenius manifolds and cohomological field theories to flat F-manifolds and F-cohomological field theories. In particular, we define a notion of Givental cone for flat F-manifolds, and we provide a generalization of the Givental group as a matrix loop group acting on them. We show that this action is transitive on semisimple flat F-manifolds. We then extend this action to F-cohomological field theories in all genera. We show that, given a semisimple flat F-manifold and a Givental group element connecting it to the constant flat F-manifold at its origin, one can construct a family of F-CohFTs in all genera, parameterized by a vector in the associative algebra at the origin, whose genus 0 part is the given flat F-manifold. If the flat F-manifold is homogeneous, then the associated family of F-CohFTs contains a subfamily of homogeneous F-CohFTs. However, unlike in the case of Frobenius manifolds and CohFTs, these homogeneous F-CohFTs can have different conformal dimensions, which are determined by the properties of a certain metric associated to the flat F-manifold.
Articolo in rivista - Articolo scientifico
Flat F-manifolds, F-cohomological field theories, Givental group action
English
17-nov-2022
2023
397
1
141
197
none
Arsie, A., Buryak, A., Lorenzoni, P., Rossi, P. (2023). Semisimple Flat F-Manifolds in Higher Genus. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 397(1), 141-197 [10.1007/s00220-022-04450-6].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/397218
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
Social impact