DDeciding the best action in social settings requires decision-makers to consider their and others' preferences, since the outcome depends on the actions of both. Numerous empirical investigations have demonstrated variability of behavior across individuals in strategic situations. While prosocial, moral, and emotional factors have been intensively investigated to explain this diversity, neuro-cognitive determinants of strategic decision-making and their relation with intelligence remain mostly unknown. This study presents a new model of the process of strategic decision-making in repeated interactions, first providing a precise measure of the environment's complexity, and then analyzing how this complexity affects subjects' performance and neural response. The results confirm the theoretical predictions of the model. The frequency of deviations from optimal behavior is explained by a combination of higher complexity of the strategic environment and cognitive skills of the individuals. Brain response correlates with strategic complexity, but only in the subgroups with higher cognitive skills. Furthermore, neural effects were only observed in a fronto-parietal network typically involved in single-agent tasks (the Multiple Demand Network), thus suggesting that neural processes dealing with cognitively demanding individual tasks also have a central role in interactive decision-making. Our findings contribute to understanding how cognitive factors shape strategic decision-making and may provide the neural pathway of the reported association between strategic sophistication and fluid intelligence.

Reverberi, C., Pischedda, D., Mantovani, M., Haynes, J., Rustichini, A. (2022). Strategic complexity and cognitive skills affect brain response in interactive decision-making. SCIENTIFIC REPORTS, 12(1) [10.1038/s41598-022-17951-0].

Strategic complexity and cognitive skills affect brain response in interactive decision-making

Reverberi, Carlo
;
Mantovani, Marco;
2022

Abstract

DDeciding the best action in social settings requires decision-makers to consider their and others' preferences, since the outcome depends on the actions of both. Numerous empirical investigations have demonstrated variability of behavior across individuals in strategic situations. While prosocial, moral, and emotional factors have been intensively investigated to explain this diversity, neuro-cognitive determinants of strategic decision-making and their relation with intelligence remain mostly unknown. This study presents a new model of the process of strategic decision-making in repeated interactions, first providing a precise measure of the environment's complexity, and then analyzing how this complexity affects subjects' performance and neural response. The results confirm the theoretical predictions of the model. The frequency of deviations from optimal behavior is explained by a combination of higher complexity of the strategic environment and cognitive skills of the individuals. Brain response correlates with strategic complexity, but only in the subgroups with higher cognitive skills. Furthermore, neural effects were only observed in a fronto-parietal network typically involved in single-agent tasks (the Multiple Demand Network), thus suggesting that neural processes dealing with cognitively demanding individual tasks also have a central role in interactive decision-making. Our findings contribute to understanding how cognitive factors shape strategic decision-making and may provide the neural pathway of the reported association between strategic sophistication and fluid intelligence.
Articolo in rivista - Articolo scientifico
Cognition; Emotions; Humans; Morals; Brain; Decision Making
English
23-set-2022
2022
12
1
15896
open
Reverberi, C., Pischedda, D., Mantovani, M., Haynes, J., Rustichini, A. (2022). Strategic complexity and cognitive skills affect brain response in interactive decision-making. SCIENTIFIC REPORTS, 12(1) [10.1038/s41598-022-17951-0].
File in questo prodotto:
File Dimensione Formato  
Reverberi-2022-Scient Rep-VoR.pdf

accesso aperto

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 3.45 MB
Formato Adobe PDF
3.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/396193
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
Social impact