In this article we prove that the singular set of Dirichlet-minimizing Q-valued functions is countably .m2/-rectifiable and we give upper bounds for the .m2/-dimensional Minkowski content of the set of singular points with multiplicity Q.
De Lellis, C., Marchese, A., Spadaro, E., Valtorta, D. (2018). Rectifiability and upper Minkowski bounds for singularities of harmonic Q-valued maps. COMMENTARII MATHEMATICI HELVETICI, 93(4), 737-779 [10.4171/CMH/449].
Rectifiability and upper Minkowski bounds for singularities of harmonic Q-valued maps
Valtorta D.
2018
Abstract
In this article we prove that the singular set of Dirichlet-minimizing Q-valued functions is countably .m2/-rectifiable and we give upper bounds for the .m2/-dimensional Minkowski content of the set of singular points with multiplicity Q.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DeLellis-2018-Commentarii Mathematici Helvetici-preprint.pdf
accesso aperto
Descrizione: Article
Tipologia di allegato:
Submitted Version (Pre-print)
Dimensione
423.93 kB
Formato
Adobe PDF
|
423.93 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.