In this article we prove that the singular set of Dirichlet-minimizing Q-valued functions is countably .m2/-rectifiable and we give upper bounds for the .m2/-dimensional Minkowski content of the set of singular points with multiplicity Q.

De Lellis, C., Marchese, A., Spadaro, E., Valtorta, D. (2018). Rectifiability and upper Minkowski bounds for singularities of harmonic Q-valued maps. COMMENTARII MATHEMATICI HELVETICI, 93(4), 737-779 [10.4171/CMH/449].

Rectifiability and upper Minkowski bounds for singularities of harmonic Q-valued maps

Valtorta D.
2018

Abstract

In this article we prove that the singular set of Dirichlet-minimizing Q-valued functions is countably .m2/-rectifiable and we give upper bounds for the .m2/-dimensional Minkowski content of the set of singular points with multiplicity Q.
Articolo in rivista - Articolo scientifico
Dirichlet energy; Multiple-valued functions; Rectifiability; Regularity; Singularities;
English
2018
93
4
737
779
open
De Lellis, C., Marchese, A., Spadaro, E., Valtorta, D. (2018). Rectifiability and upper Minkowski bounds for singularities of harmonic Q-valued maps. COMMENTARII MATHEMATICI HELVETICI, 93(4), 737-779 [10.4171/CMH/449].
File in questo prodotto:
File Dimensione Formato  
DeLellis-2018-Commentarii Mathematici Helvetici-preprint.pdf

accesso aperto

Descrizione: Article
Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 423.93 kB
Formato Adobe PDF
423.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/393674
Citazioni
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
Social impact