Gender-sensitive statistics can highlight gender gaps, but current measurement tools have serious limitations Here, Fulvia Mecatti, Paola Vicard, Flaminia Musella and Lorenzo Giammei explore how Bayesian networks could help improve the measurement, monitoring and prediction of gender equality.

Mecatti, F., Vicard, P., Musella, F., Giammei, L. (2022). Bayesian networks versus gender bias. SIGNIFICANCE, 19(5 (October 2022)), 16-20 [10.1111/1740-9713.01684].

Bayesian networks versus gender bias

Mecatti, F
;
2022

Abstract

Gender-sensitive statistics can highlight gender gaps, but current measurement tools have serious limitations Here, Fulvia Mecatti, Paola Vicard, Flaminia Musella and Lorenzo Giammei explore how Bayesian networks could help improve the measurement, monitoring and prediction of gender equality.
Articolo in rivista - Articolo scientifico
Bayesian Network, Gender gaps, Gender Statistics, Structural Learning
English
26-set-2022
2022
19
5 (October 2022)
16
20
reserved
Mecatti, F., Vicard, P., Musella, F., Giammei, L. (2022). Bayesian networks versus gender bias. SIGNIFICANCE, 19(5 (October 2022)), 16-20 [10.1111/1740-9713.01684].
File in questo prodotto:
File Dimensione Formato  
Mecatti-2022-Significance-VoR.pdf

Solo gestori archivio

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/393437
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
Social impact