Gender-sensitive statistics can highlight gender gaps, but current measurement tools have serious limitations Here, Fulvia Mecatti, Paola Vicard, Flaminia Musella and Lorenzo Giammei explore how Bayesian networks could help improve the measurement, monitoring and prediction of gender equality.
Mecatti, F., Vicard, P., Musella, F., Giammei, L. (2022). Bayesian networks versus gender bias. SIGNIFICANCE, 19(5 (October 2022)), 16-20 [10.1111/1740-9713.01684].
Bayesian networks versus gender bias
Mecatti, F
;
2022
Abstract
Gender-sensitive statistics can highlight gender gaps, but current measurement tools have serious limitations Here, Fulvia Mecatti, Paola Vicard, Flaminia Musella and Lorenzo Giammei explore how Bayesian networks could help improve the measurement, monitoring and prediction of gender equality.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Mecatti-2022-Significance-VoR.pdf
Solo gestori archivio
Descrizione: Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
1.7 MB
Formato
Adobe PDF
|
1.7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.