The adoption of smart device technologies is steadily increasing. Most of the smart devices in use today have built-in sensors which measure motion, direction, and various environmental conditions. Sensors are able to provide raw data with different quality and accuracy. A large group of smart devices forms a mobile crowdsensing system which is capable of sensing, collecting and sharing the environmental data to perform large scale sensing jobs. This paper aims to study and design an incentive mechanism for a mobile crowdsensing system based on a one-leader multi-follower Stackelberg game. A platform provider, as proponent of the sensing job, will act as the leader, while the mobile users will act as the followers. The final goal is to devise an efficient mechanism able to motivate the smart device users to participate in the sensing activity. Different from existing approaches, we propose a centralized method where the platform provider can estimate users’ parameters very efficiently sending and receiving a few messages. We formulate the optimization problem on the platform provider side as a mixed integer nonlinear program with time constraints for each job and a budget constraint. Finally, a heuristic algorithm based on the derivative-free directional direct search method is designed to solve the platform optimization problem and achieve a close-to-optimal solution for the game. Results show that our Stackelberg game solution is much more scalable than the approach proposed in the work by other authors Zhan et al. (2018) as we can decrease the average number of messages by a factor between 53 to 80 and the average running time between 23 and 650 times. Furthermore, we compared our heuristic algorithm with BARON, a state of the art commercial tool for mixed integer global optimization, to solve the platform optimization problem. Results demonstrated that our proposed algorithm converges to a near-optimal solution much faster especially in large scale systems.
Sedghani, H., Ardagna, D., Passacantando, M., Lighvan, M., Aghdasi, H. (2021). An incentive mechanism based on a Stackelberg game for mobile crowdsensing systems with budget constraint. AD HOC NETWORKS, 123(1 December 2021) [10.1016/j.adhoc.2021.102626].
An incentive mechanism based on a Stackelberg game for mobile crowdsensing systems with budget constraint
Passacantando, M
;
2021
Abstract
The adoption of smart device technologies is steadily increasing. Most of the smart devices in use today have built-in sensors which measure motion, direction, and various environmental conditions. Sensors are able to provide raw data with different quality and accuracy. A large group of smart devices forms a mobile crowdsensing system which is capable of sensing, collecting and sharing the environmental data to perform large scale sensing jobs. This paper aims to study and design an incentive mechanism for a mobile crowdsensing system based on a one-leader multi-follower Stackelberg game. A platform provider, as proponent of the sensing job, will act as the leader, while the mobile users will act as the followers. The final goal is to devise an efficient mechanism able to motivate the smart device users to participate in the sensing activity. Different from existing approaches, we propose a centralized method where the platform provider can estimate users’ parameters very efficiently sending and receiving a few messages. We formulate the optimization problem on the platform provider side as a mixed integer nonlinear program with time constraints for each job and a budget constraint. Finally, a heuristic algorithm based on the derivative-free directional direct search method is designed to solve the platform optimization problem and achieve a close-to-optimal solution for the game. Results show that our Stackelberg game solution is much more scalable than the approach proposed in the work by other authors Zhan et al. (2018) as we can decrease the average number of messages by a factor between 53 to 80 and the average running time between 23 and 650 times. Furthermore, we compared our heuristic algorithm with BARON, a state of the art commercial tool for mixed integer global optimization, to solve the platform optimization problem. Results demonstrated that our proposed algorithm converges to a near-optimal solution much faster especially in large scale systems.File | Dimensione | Formato | |
---|---|---|---|
Sedghani-2021-Ad hoc networks-AAM.pdf
accesso aperto
Descrizione: Research Article
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Creative Commons
Dimensione
858.03 kB
Formato
Adobe PDF
|
858.03 kB | Adobe PDF | Visualizza/Apri |
Sedghani-2021-Ad hoc networks-VoR.pdf
Solo gestori archivio
Descrizione: Research Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
2.17 MB
Formato
Adobe PDF
|
2.17 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.