Cannabis is one of the first plants used as medicine, and the notion that it has potentially valuable therapeutic properties is a matter of current debate. The isolation of its main constituent, Delta9-tetrahydrocannabinol (THC), and the discovery of the endocannabinoid system (cannabinoid receptors CB1 and CB2 and their endogenous ligands) made possible studies concerning the pharmacological activity of cannabinoids. This paper reviews some of the most-important findings in the field of THC pharmacology. Clinical trials, anecdotal reports, and experiments employing animal models strongly support the idea that THC and its derivatives exhibit a wide variety of therapeutic applications. However, the psychotropic effects observed in laboratory animals and the adverse reactions reported during human trials, as well as the risk of tolerance development and potential dependence, limit the application of THC in therapy. Nowadays, researchers focus on other therapeutic strategies by which the endocannabinoid system might be modulated to clinical advantage (inhibitor or activator of endocannabinoid biosynthesis, cellular uptake, or metabolism). However, emerging evidence highlights the beneficial effects of the whole cannabis extract over those observed with single components, indicating cannabis-based medicines as new perspective to revisit the pharmacology of this plant.
Costa, B. (2007). On the pharmacological properties of Delta9-tetrahydrocannabinol (THC). CHEMISTRY & BIODIVERSITY, 4(8), 1664-1677 [10.1002/cbdv.200790146].
On the pharmacological properties of Delta9-tetrahydrocannabinol (THC)
COSTA, BARBARA SIMONA
2007
Abstract
Cannabis is one of the first plants used as medicine, and the notion that it has potentially valuable therapeutic properties is a matter of current debate. The isolation of its main constituent, Delta9-tetrahydrocannabinol (THC), and the discovery of the endocannabinoid system (cannabinoid receptors CB1 and CB2 and their endogenous ligands) made possible studies concerning the pharmacological activity of cannabinoids. This paper reviews some of the most-important findings in the field of THC pharmacology. Clinical trials, anecdotal reports, and experiments employing animal models strongly support the idea that THC and its derivatives exhibit a wide variety of therapeutic applications. However, the psychotropic effects observed in laboratory animals and the adverse reactions reported during human trials, as well as the risk of tolerance development and potential dependence, limit the application of THC in therapy. Nowadays, researchers focus on other therapeutic strategies by which the endocannabinoid system might be modulated to clinical advantage (inhibitor or activator of endocannabinoid biosynthesis, cellular uptake, or metabolism). However, emerging evidence highlights the beneficial effects of the whole cannabis extract over those observed with single components, indicating cannabis-based medicines as new perspective to revisit the pharmacology of this plant.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.