We study the almost Kähler geometry of adjoint orbits of non-compact real semisimple Lie groups endowed with the Kirillov–Kostant–Souriau symplectic form and a canonically defined almost-complex structure. We give explicit formulas for the Chern–Ricci form, the Hermitian scalar curvature and the Nijenhuis tensor in terms of root data. We also discuss when the Chern–Ricci form is a multiple of the symplectic form, and when compact quotients of these orbits are of Kähler type.

Della Vedova, A., Gatti, A. (2022). Almost Kähler geometry of adjoint orbits of semisimple Lie groups. MATHEMATISCHE ZEITSCHRIFT, 301(3), 3141-3183 [10.1007/s00209-022-02995-9].

Almost Kähler geometry of adjoint orbits of semisimple Lie groups

Della Vedova, A;
2022

Abstract

We study the almost Kähler geometry of adjoint orbits of non-compact real semisimple Lie groups endowed with the Kirillov–Kostant–Souriau symplectic form and a canonically defined almost-complex structure. We give explicit formulas for the Chern–Ricci form, the Hermitian scalar curvature and the Nijenhuis tensor in terms of root data. We also discuss when the Chern–Ricci form is a multiple of the symplectic form, and when compact quotients of these orbits are of Kähler type.
Articolo in rivista - Articolo scientifico
(co)adjoint orbits; Canonical almost Kähler metrics; Homogeneous manifolds; Special metrics;
English
30-mar-2022
2022
301
3
3141
3183
reserved
Della Vedova, A., Gatti, A. (2022). Almost Kähler geometry of adjoint orbits of semisimple Lie groups. MATHEMATISCHE ZEITSCHRIFT, 301(3), 3141-3183 [10.1007/s00209-022-02995-9].
File in questo prodotto:
File Dimensione Formato  
Della Vedova-2022-Math Zeitschrift-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 505.33 kB
Formato Adobe PDF
505.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/385726
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact