We examine preliminary data from a landslide inventory that combines the mapping of landslides and deep-seated gravitational slope deformations (DSGSDs) in Val di Sole, eastern Central Alps, Italy. Landslide identification and classification was conducted via interpretation of sequential airphotos (API), LiDAR shaded-relief rasters. Landslide geometries were measured in the field for a sample of events. Seeking to evaluate landslide-driven sediment flux, we consider landslides as sediment sources and we classify them into rapid, full-mobility failures and slow, partial-mobility ones. The corresponding sediment flux, solely associated with rapid failures, exhibits clear lithologic controls, with metamorphic rocks displaying markedly higher landslide activity. DSGSDs occur exclusively in metamorphic terrain and landslides tend to cluster around them. Accordingly, these large-scale slope deformations could play a prominent role in modulating the contemporary landslide sediment flux. In the compilation of the inventory, the use of LiDAR and airphotos did not prove to be mutually exclusive. We recommend the two methodologies be employed in an integrated framework.
Brardinoni, F., Crosta, G., Cucchiaro, S., Valbuzzi, E., Frattini, P. (2013). Landslide mobility and landslide sediment transfer in Val di Sole, eastern Central Alps. In Landslide Science and Practice: Global Environmental Change (pp.315-320). Berlin : Springer [10.1007/978-3-642-31337-0-40].
Landslide mobility and landslide sediment transfer in Val di Sole, eastern Central Alps
CROSTA, GIOVANNI;VALBUZZI, ELENA;FRATTINI, PAOLO
2013
Abstract
We examine preliminary data from a landslide inventory that combines the mapping of landslides and deep-seated gravitational slope deformations (DSGSDs) in Val di Sole, eastern Central Alps, Italy. Landslide identification and classification was conducted via interpretation of sequential airphotos (API), LiDAR shaded-relief rasters. Landslide geometries were measured in the field for a sample of events. Seeking to evaluate landslide-driven sediment flux, we consider landslides as sediment sources and we classify them into rapid, full-mobility failures and slow, partial-mobility ones. The corresponding sediment flux, solely associated with rapid failures, exhibits clear lithologic controls, with metamorphic rocks displaying markedly higher landslide activity. DSGSDs occur exclusively in metamorphic terrain and landslides tend to cluster around them. Accordingly, these large-scale slope deformations could play a prominent role in modulating the contemporary landslide sediment flux. In the compilation of the inventory, the use of LiDAR and airphotos did not prove to be mutually exclusive. We recommend the two methodologies be employed in an integrated framework.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.