A stochastic volatility jump-diffusion model for pricing derivatives with jumps in both spot return and volatility underlying dynamics is presented. This model admits, in the spirit of Heston, a closed-form solution for European-style options. The structure of the model is also suitable to explicitly obtain the fair delivery price for variance swaps. To evaluate derivatives whose value does not admit a closed-form expression, a methodology based on an "exact algorithm", in the sense that no discretization of equations is required, is developed and applied to barrier options. Goodness of pricing algorithm is tested using DJ Euro Stoxx 50 market data for European options. Finally, the algorithm is applied to compute prices and Greeks for barrier options and to determine the fair delivery prices for variance swaps.
D'Ippoliti, F., Moretto, E., Pasquali, S., Trivellato, B. (2010). Exact pricing with stochastic volatility and jumps. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 13(6), 901-929 [10.1142/S0219024910006042].
Exact pricing with stochastic volatility and jumps
Moretto, Enrico;
2010
Abstract
A stochastic volatility jump-diffusion model for pricing derivatives with jumps in both spot return and volatility underlying dynamics is presented. This model admits, in the spirit of Heston, a closed-form solution for European-style options. The structure of the model is also suitable to explicitly obtain the fair delivery price for variance swaps. To evaluate derivatives whose value does not admit a closed-form expression, a methodology based on an "exact algorithm", in the sense that no discretization of equations is required, is developed and applied to barrier options. Goodness of pricing algorithm is tested using DJ Euro Stoxx 50 market data for European options. Finally, the algorithm is applied to compute prices and Greeks for barrier options and to determine the fair delivery prices for variance swaps.File | Dimensione | Formato | |
---|---|---|---|
S0219024910006042.pdf
Solo gestori archivio
Dimensione
532.26 kB
Formato
Adobe PDF
|
532.26 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.