In the field of semiconductors, the study of spin-dependent properties provides fundamental information needed for the realization of devices that merge spin, photonic and electronic functionalities. In these devices the information is encoded in the spin degree of freedom (DOF), exploiting the interaction between the angular momentum of the photon and the carrier spin via the spin-orbit coupling (SOC). I focused on the study of SOC in Si, Ge, Sn and their alloys using optical spectroscopy. These materials possess promising properties for spintronics applications such as long spin lifetime, diffusion length and decoherence time. Notably, the advanced manufacture also opens the way to bandgap and strain engineering as further DOF to tune spin-dependent phenomena, whereas the application of optical spectroscopy allows to overcome typical problems of electrical measurements, e.g., the quality of contacts, that hamper the estimation of carrier kinetics parameters Quantum well (QW) systems are valid platforms to merge all the aforementioned DOF and to also introduce a way to manipulate the spin via electric fields. Indeed, in QW systems that possess bulk or structure inversion asymmetry (BIA/SIA), the spin degeneracy is removed due to the Dresselhaus or Rashba fields. As effective magnetic fields, they can act on the spin of a carrier, ultimately changing its orientation. SIA can arise from an asymmetric doping of the device. In this case, the device also possesses an intrinsic electric field, which can be of practical use for applications. Indeed, an external field can be applied to tune the Rashba field, achieving spin manipulation. This opportunity has a strong impact in spintronics devices, such as the spin-FET, where the gate voltage selects the orientation of the spin and switch between on/off states I carried out photoluminescence (PL) investigations on a stack of 50 Ge/Si0.15Ge0.85 QWs grown within the intrinsic region of a p-i-n diode. The asymmetric doping introduces the SIA, necessary for achieving electrical manipulation of the spin. Via a pair of Al contacts, I was also able to study the effect of a tunable external electric field on the spin population via continuous-wave as well as time-resolved PL. Additionally, a power dependent analysis unveiled a strong effect of the light pump on the polarization I also performed PL measurements on a single modulation-doped Ge0.91Sn0.09/Ge QW. The band edge profile confines holes in the well, resulting in the formation of a two-dimensional hole gas. The asymmetric structure introduces the SIA and allows for the observation of spin-to-charge conversion mechanisms in this 2D system. I patterned a Hall bar on the sample and performed inverse spin-Hall effect measurements, extracting the spin-Hall angle. I also performed magneto-optics measurement, namely the Hanle effect, to unveil the carrier lifetime (T) of the material, which is in the ns regime at 10 K. This optical technique was applied for the first time to group IV materials in Ge1-xSnx epilayers (below), and was extended also to the QW system, proving it to be a reliable and easy method to determine T I have also studied Ge1-xSnx epilayers. The Sn content was varied from 0 to 10 %, while the compressive strain ensured an indirect bandgap nature. I applied Hanle effect to extract T and I unveiled a non-trivial behaviour with the Sn content, whose origin is ascribed to the presence of crystal flaws possibly due to the strong out-of-equilibrium growth conditions required for the realization of Sn-rich Ge1-xSnx samples In conclusion, this thesis is devoted to an all-optical investigation of SOC in heterostructures of group IV materials. The results obtained here are a step forwards in the investigation of spin dynamics of electrons in group IV and pave the way to future exploration of electrical-optical manipulation of spins in quantum technologies based on spin-photon interaction such as spin-FETs and spin-lasers
Nel campo dei semiconduttori, lo studio delle proprietà spin dipendenti forniscono informazioni fondamentali per la realizzazione di dispositivi che uniscano spin, fotonica ed elettronica. In questi dispositivi l’informazione è codificata nel grado di libertà (DOF) dello spin, sfruttando l’accoppiamento spin-orbita (SOC) tra il momento angolare del fotone e lo spin del portatore. Ho concentrato la mia ricerca sullo studio del SOC con spettroscopia ottica in Si, Ge, Sn e loro leghe. Questi materiali possiedono proprietà promettenti per applicazioni di spintronica, tra cui lunghi tempi di vita e lunghezze di diffusione dello spin. I processi di fabbricazione aprono la strada all’ingegnerizzazione del bandgap e dello strain come DOF addizionali per sintonizzare i fenomeni spin-dipendenti. La spettroscopia ottica permette di superare i problemi delle misure elettriche, come la qualità dei contatti, che impediscono una stima corretta dei parametri cinetici. I pozzi quantici (QW), sono valide piattaforme per unire i DOF sopracitati e permettere la manipolazione dello spin con campi elettrici. Nei sistemi a QW che mancano della simmetria di inversione di punto o di quella strutturale (BIA/SIA), la degenerazione di spin è rimossa dai campi Dresselhaus o Rashba. In quanto campi magnetici, possono agire agiscono sullo spin cambiandone l’orientazione. La SIA può sorgere da un drogaggio asimmetrico. In questo caso, il dispositivo possiede anche un campo elettrico che può essere sfruttato. Infatti, con un campo elettrico esterno si può modulare il campo Rashba, manipolando lo spin. Questa possibilità è significativa per la spintronica, si pensi allo spin-FET, dove la tensione di gate seleziona l’orientazione dello spin e quindi lo stato on/off. Ho eseguito misure di fotoluminescenza (PL) su campioni costituiti da uno stack di 50 QW di Ge/Si0.15Ge0.85 cresciuto nella zona intrinseca di un diodo p-i-n. Il drogaggio asimmetrico introduce la SIA, permettendo di manipolare elettricamente lo spin. Tramite due contatti in Al, ho sintonizzato un campo elettrico esterno e studiato gli effetti sulla popolazione di spin tramite PL. Inoltre, un’analisi in funzione della potenza ha mostrato una dipendenza della polarizzazione della PL dalla pompa ottica. Ho studiato anche una singola modulation-doped QW Ge0.91Sn0.09/Ge. Il profilo di banda confina delle lacune e permette la formazione di un gas bidimensionale di lacune. La struttura asimmetrica introduce la SIA, permettendo di studiare meccanismi di conversione spin-carica. Tramite litografia ho realizzato una barra di Hall ed ho eseguito misure di effetto spin-Hall inverso, da cui ho potuto estrarre l’angolo di spin-Hall. Ho anche compiuto misure magneto-ottiche a 4K, sfruttando l’effetto Hanle, per ottenere il tempo di vita (T) del portatore, che risulta di pochi ns. L’effetto Hanle è stato applicato per la prima volta nei materiali del quarto gruppo in epistrati di Ge1-xSnx (sotto), e l’ho esteso alle QW, dimostrandosi una tecnica affidabile per determinare T. Ho studiato anche campioni di epistrato di Ge1-xSnx. Il contenuto di Sn varia da 0 a 10 %, e lo strain compressivo assicura una natura indiretta del bandgap. Ho estratto T e ho trovato un comportamento non banale al variare della percentuale di Sn, la cui origine può essere attribuita alla presenza di difetti del cristallo. Questi difetti sono dovuti possibilmente alla crescita fortemente fuori equilibrio necessaria per la realizzazione di campioni di Ge1-xSnx ricchi in Sn. Per concludere, in questa tesi mi sono occupato di misure ottiche per indagare il SOC in eterostrutture di materiali del IV gruppo. I risultati ottenuti sono un passo in avanti nell’investigazione della dinamica dello spin elettronico del gruppo IV e aprono la strada verso studi futuri sulla manipolazione elettro-ottica dello spin in tecnologie quantistiche basate sull’interazione spin-luce, come spin-FET, spin-laser
(2022). Optical investigation of phenomena induced by spin-orbit coupling in group IV heterostructures. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).
Optical investigation of phenomena induced by spin-orbit coupling in group IV heterostructures
ROSSI, SIMONE
2022
Abstract
In the field of semiconductors, the study of spin-dependent properties provides fundamental information needed for the realization of devices that merge spin, photonic and electronic functionalities. In these devices the information is encoded in the spin degree of freedom (DOF), exploiting the interaction between the angular momentum of the photon and the carrier spin via the spin-orbit coupling (SOC). I focused on the study of SOC in Si, Ge, Sn and their alloys using optical spectroscopy. These materials possess promising properties for spintronics applications such as long spin lifetime, diffusion length and decoherence time. Notably, the advanced manufacture also opens the way to bandgap and strain engineering as further DOF to tune spin-dependent phenomena, whereas the application of optical spectroscopy allows to overcome typical problems of electrical measurements, e.g., the quality of contacts, that hamper the estimation of carrier kinetics parameters Quantum well (QW) systems are valid platforms to merge all the aforementioned DOF and to also introduce a way to manipulate the spin via electric fields. Indeed, in QW systems that possess bulk or structure inversion asymmetry (BIA/SIA), the spin degeneracy is removed due to the Dresselhaus or Rashba fields. As effective magnetic fields, they can act on the spin of a carrier, ultimately changing its orientation. SIA can arise from an asymmetric doping of the device. In this case, the device also possesses an intrinsic electric field, which can be of practical use for applications. Indeed, an external field can be applied to tune the Rashba field, achieving spin manipulation. This opportunity has a strong impact in spintronics devices, such as the spin-FET, where the gate voltage selects the orientation of the spin and switch between on/off states I carried out photoluminescence (PL) investigations on a stack of 50 Ge/Si0.15Ge0.85 QWs grown within the intrinsic region of a p-i-n diode. The asymmetric doping introduces the SIA, necessary for achieving electrical manipulation of the spin. Via a pair of Al contacts, I was also able to study the effect of a tunable external electric field on the spin population via continuous-wave as well as time-resolved PL. Additionally, a power dependent analysis unveiled a strong effect of the light pump on the polarization I also performed PL measurements on a single modulation-doped Ge0.91Sn0.09/Ge QW. The band edge profile confines holes in the well, resulting in the formation of a two-dimensional hole gas. The asymmetric structure introduces the SIA and allows for the observation of spin-to-charge conversion mechanisms in this 2D system. I patterned a Hall bar on the sample and performed inverse spin-Hall effect measurements, extracting the spin-Hall angle. I also performed magneto-optics measurement, namely the Hanle effect, to unveil the carrier lifetime (T) of the material, which is in the ns regime at 10 K. This optical technique was applied for the first time to group IV materials in Ge1-xSnx epilayers (below), and was extended also to the QW system, proving it to be a reliable and easy method to determine T I have also studied Ge1-xSnx epilayers. The Sn content was varied from 0 to 10 %, while the compressive strain ensured an indirect bandgap nature. I applied Hanle effect to extract T and I unveiled a non-trivial behaviour with the Sn content, whose origin is ascribed to the presence of crystal flaws possibly due to the strong out-of-equilibrium growth conditions required for the realization of Sn-rich Ge1-xSnx samples In conclusion, this thesis is devoted to an all-optical investigation of SOC in heterostructures of group IV materials. The results obtained here are a step forwards in the investigation of spin dynamics of electrons in group IV and pave the way to future exploration of electrical-optical manipulation of spins in quantum technologies based on spin-photon interaction such as spin-FETs and spin-lasersFile | Dimensione | Formato | |
---|---|---|---|
phd_unimib_776561.pdf
accesso aperto
Descrizione: Optical investigation of phenomena induced by spin-orbit coupling in group IV heterostructures
Tipologia di allegato:
Doctoral thesis
Dimensione
14.13 MB
Formato
Adobe PDF
|
14.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.