The brain ascending regulatory system is a complex of interconnected neuronal nuclei of different neurochemical nature, located in the brainstem, basal forebrain and hypothalamus. These nuclei regulate arousal, attentive and conscious states as well as in the autonomic state regulation. The brain ascending regulatory system acts at all scales in the brain and these levels of control are achieved through a variety of neurotransmitters’ mechanisms of action, having different time lags and durations. Any defect or alteration of the brain ascending modulatory system may impact on its ability to generate and sustain rhythms and thus affect the regulation and stability of sleep/wake and behavioural states, as well as cognition. The two diseases I have studied are of this kind: Autosomal Dominant Sleep-related Hypermotor Epilepsy (ADSHE), often linked to cholinergic dysfunction, and narcolepsy with cataplexy (NC), caused by orexin deficiency. Both ADSHE and narcolepsy can be defined as rhythmopaties, since their defining symptoms are dysfunctions of brain activity rhythm. In this thesis, I characterized the functional alterations of nicotinic acetylcholine receptors (nAChRs) containing mutant α2 subunits linked to ADSHE or Autosomal Dominant Lateral Temporal Lobe Epilepsy. The mutations caused a loss-of-function of the channel suggesting that CHRNA2-affecting mutations are more commonly linked to epileptic syndromes than previously thought, especially loss-of-function ones. We also studied the morpho-functional alterations in the prefrontal cortex layer V of mice conditionally expressing the ADSHE-linked β2V287L subunit. Its expression was correlated to minor morphological alterations in pyramidal neurons’ dendritic ramification, as well as to a ~10% decrease of prefrontal cortex thickness. Mutant mice showed larger somatic nicotinic currents in regular spiking SOM+ interneurons insensitive to serotonin (largely Martinotti cells). These results may explain why seizures may be facilitated by the low cholinergic tone typical of NREM sleep and why nicotine administration can be palliative in patients. I demonstrated the effective deletion of Ox2R in the Ox2R-Δ mice, created by Dr. Anne Vassalli. I also assessed if the Ox2R-flox mice had functionally equivalent Ox2R as C57BL6/J control mice. The responses to Ox2R agonists of the classical Ox2R-expressing neuronal type – the histaminergic neurons of the ventral tuberomammillary nucleus of the hypothalamus – confirmed this mouse model as a reliable tool to dissect the specific function of Ox2R in the cerebral circuits. We studied the Orx modulation of pyramidal and interneuronal microcircuits of Fr2 and medial PFC. OrxA stimulated EPSCs on layer V pyramidal neurons. The effect is mainly mediated by Ox1Rs and depends on a presynaptic mechanism involving CaV channel-dependent and independent mechanisms. OrxB exerts a combined effect on Ox2Rs and Ox1Rs, producing an inhibitory effect that is reverse compared to that of the activation of Ox2Rs or Ox1Rs alone. Immunocytochemistry showed a diffuse Ox2R distribution on both cell bodies and neuropil and colocalization analysis showed a denser orexinergic innervation of SOM+ GABAergic interneurons, as compared to PV+ cells; a higher expression of Ox2R on SOM+ neurons. These interneurons have been shown to contribute to the generation of θ band rhythm in the neocortex and hippocampus, so orexins could regulate θ rhytmogenesis in the PFC. Finally, we investigated the reasons of the increased excitability of the VTA-septo-hippocampal pathway shown by Ox2RDat-CKO mice. Our data suggest that it may be due to a specific Ox2R-dependent regulation of VTADA neurons, probably downstream of VTAGABA ones: when the Ox2R-dependent orexin sensitivity of VTADA neurons is impaired, the VTAGABA cells are no longer able to block the intrinsic θ-resonant hippocampal activity, either through VTADA activation or via another unknow mechanism.

Il sistema di regolazione ascendente è costituito da diversi nuclei situati nel tronco cerebrale, nel prosencefalo basale e nell'ipotalamo. Questi nuclei regolano l'eccitazione, gli stati attentivi e coscienti, nonché l’attivazione autonomica. Il sistema di regolazione ascendente agisce a tutte le scale temporali e questi livelli di controllo sono raggiunti attraverso una varietà di meccanismi d'azione dei neurotrasmettitori, con diversi tempi e durate. Qualsiasi alterazione del sistema modulatorio ascendente può influire sulla sua capacità di generare i ritmi e quindi influenzare la regolazione e la stabilità del sonno/veglia e gli stati comportamentali, così come la cognizione. Le due malattie che ho studiato sono: l'epilessia ipermotoria correlata al sonno autosomica dominante (ADSHE), spesso legata a disfunzione colinergica, e la narcolessia con cataplessia (NC), causata da carenza di oressina. Sia l'ADSHE che la narcolessia possono essere definite ritmopatie, poiché i loro sintomi distintivi sono disfunzioni del ritmo dell'attività cerebrale. In questa tesi, ho caratterizzato le alterazioni funzionali dei recettori nicotinici dell'acetilcolina (nAChR) contenenti subunità α2 mutanti legate all'ADSHE o all’epilessia del lobo temporale laterale autosomico dominante. Le mutazioni hanno causato una perdita di funzione del canale suggerendo che le mutazioni su CHRNA2 sono più comunemente legate a sindromi epilettiche di quanto si pensasse in precedenza. Abbiamo studiato le alterazioni morfo-funzionali nello strato V della corteccia prefrontale di topi che esprimono la subunità β2V287L legata all'ADSHE. La sua espressione era correlata ad alterazioni morfologiche nella ramificazione dendritica dei neuroni piramidali, nonché a una diminuzione del 10% circa dello spessore della corteccia. I topi mutanti hanno mostrato correnti nicotiniche somatiche più grandi negli interneuroni SOM+ regular spiking insensibili alla serotonina (in gran parte cellule di Martinotti). Ciò può spiegare perché le convulsioni possono essere facilitate dal basso tono colinergico tipico del sonno NREM e perché la somministrazione di nicotina può essere palliativa nei pazienti. Ho dimostrato l'efficace eliminazione di Ox2R nei topi Ox2R-Δ, creati da Anne Vassalli. Ho anche valutato se i topi Ox2R-flox avessero un Ox2R funzionalmente equivalente ai topi di controllo C57BL6/J. Le risposte agli agonisti Ox2R dei neuroni istaminergici del nucleo tuberomammillare dell'ipotalamo hanno confermato questo modello murino come uno strumento affidabile per sezionare la funzione specifica di Ox2R nei circuiti cerebrali. Abbiamo studiato la modulazione Orx del microcircuito in Fr2 e PFC mediale. Le EPSC sono stimolate da OrxA sui neuroni piramidali dello strato V. L'effetto è mediato da Ox1Rs e dipende da un meccanismo presinaptico che coinvolge meccanismi indipendenti e dipendenti dal canale CaV. OrxB esercita un effetto combinato su Ox2Rs e Ox1Rs, producendo un effetto inibitorio. Ox2R ha un distribuzione diffusa sui corpi cellulari e nel neuropilo, e l'analisi di colocalizzazione ha mostrato un'innervazione oressinergica più densa degli interneuroni SOM+ GABAergici, rispetto alle cellule PV+ e una maggiore espressione di Ox2R sui neuroni SOM+. Questi interneuroni contribuiscono alla generazione del ritmo θ nella neocorteccia e nell'ippocampo, quindi le oressine potrebbero regolare la ritmogenesi θ nella PFC. Infine, abbiamo studiato le ragioni dell'aumentata eccitabilità della via VTA-septo-ippocampale mostrata dai topi Ox2RDat-CKO. Ciò potrebbe essere dovuto a una specifica regolazione Ox2R-dipendente dei neuroni VTADA, probabilmente a valle di quelli VTADA: quando la sensibilità all'oressina Ox2R-dipendente dei neuroni VTADA è compromessa, le cellule VTADABA non sono più in grado di bloccare l’attività θ intrinseca in ippocampo, sia attraverso l'attivazione di VTADA che attraverso un altro meccanismo sconosciuto.

(2022). Orexinergic and cholinergic function in the brain ascending modulatory system and its implications in sleep-related pathologies. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).

Orexinergic and cholinergic function in the brain ascending modulatory system and its implications in sleep-related pathologies

COLOMBO, GIULIA
2022

Abstract

The brain ascending regulatory system is a complex of interconnected neuronal nuclei of different neurochemical nature, located in the brainstem, basal forebrain and hypothalamus. These nuclei regulate arousal, attentive and conscious states as well as in the autonomic state regulation. The brain ascending regulatory system acts at all scales in the brain and these levels of control are achieved through a variety of neurotransmitters’ mechanisms of action, having different time lags and durations. Any defect or alteration of the brain ascending modulatory system may impact on its ability to generate and sustain rhythms and thus affect the regulation and stability of sleep/wake and behavioural states, as well as cognition. The two diseases I have studied are of this kind: Autosomal Dominant Sleep-related Hypermotor Epilepsy (ADSHE), often linked to cholinergic dysfunction, and narcolepsy with cataplexy (NC), caused by orexin deficiency. Both ADSHE and narcolepsy can be defined as rhythmopaties, since their defining symptoms are dysfunctions of brain activity rhythm. In this thesis, I characterized the functional alterations of nicotinic acetylcholine receptors (nAChRs) containing mutant α2 subunits linked to ADSHE or Autosomal Dominant Lateral Temporal Lobe Epilepsy. The mutations caused a loss-of-function of the channel suggesting that CHRNA2-affecting mutations are more commonly linked to epileptic syndromes than previously thought, especially loss-of-function ones. We also studied the morpho-functional alterations in the prefrontal cortex layer V of mice conditionally expressing the ADSHE-linked β2V287L subunit. Its expression was correlated to minor morphological alterations in pyramidal neurons’ dendritic ramification, as well as to a ~10% decrease of prefrontal cortex thickness. Mutant mice showed larger somatic nicotinic currents in regular spiking SOM+ interneurons insensitive to serotonin (largely Martinotti cells). These results may explain why seizures may be facilitated by the low cholinergic tone typical of NREM sleep and why nicotine administration can be palliative in patients. I demonstrated the effective deletion of Ox2R in the Ox2R-Δ mice, created by Dr. Anne Vassalli. I also assessed if the Ox2R-flox mice had functionally equivalent Ox2R as C57BL6/J control mice. The responses to Ox2R agonists of the classical Ox2R-expressing neuronal type – the histaminergic neurons of the ventral tuberomammillary nucleus of the hypothalamus – confirmed this mouse model as a reliable tool to dissect the specific function of Ox2R in the cerebral circuits. We studied the Orx modulation of pyramidal and interneuronal microcircuits of Fr2 and medial PFC. OrxA stimulated EPSCs on layer V pyramidal neurons. The effect is mainly mediated by Ox1Rs and depends on a presynaptic mechanism involving CaV channel-dependent and independent mechanisms. OrxB exerts a combined effect on Ox2Rs and Ox1Rs, producing an inhibitory effect that is reverse compared to that of the activation of Ox2Rs or Ox1Rs alone. Immunocytochemistry showed a diffuse Ox2R distribution on both cell bodies and neuropil and colocalization analysis showed a denser orexinergic innervation of SOM+ GABAergic interneurons, as compared to PV+ cells; a higher expression of Ox2R on SOM+ neurons. These interneurons have been shown to contribute to the generation of θ band rhythm in the neocortex and hippocampus, so orexins could regulate θ rhytmogenesis in the PFC. Finally, we investigated the reasons of the increased excitability of the VTA-septo-hippocampal pathway shown by Ox2RDat-CKO mice. Our data suggest that it may be due to a specific Ox2R-dependent regulation of VTADA neurons, probably downstream of VTAGABA ones: when the Ox2R-dependent orexin sensitivity of VTADA neurons is impaired, the VTAGABA cells are no longer able to block the intrinsic θ-resonant hippocampal activity, either through VTADA activation or via another unknow mechanism.
BECCHETTI, ANDREA
ritmopatia; epilessia; narcolessia; sonno; theta
rhythmopathy; epilepsy; narcolepsy; sleep; theta
BIO/09 - FISIOLOGIA
English
3-mag-2022
MEDICINA TRASLAZIONALE E MOLECOLARE - DIMET
34
2020/2021
open
(2022). Orexinergic and cholinergic function in the brain ascending modulatory system and its implications in sleep-related pathologies. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_775520.pdf

accesso aperto

Descrizione: Orexinergic and cholinergic function in the brain ascending modulatory system and its implications in sleep-related pathologies
Tipologia di allegato: Doctoral thesis
Dimensione 3.65 MB
Formato Adobe PDF
3.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/382074
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact