Platinum metal group (PGM-free) electrocatalysts for oxygen reduction reaction (ORR) were synthesized by ball milling of activated biochar and Fe(II) phthalocyanine. The biochar used as a carbon support was produced from pyrolysis of waste tea leaves at 1500 °C in argon atmosphere. The pyrolyzed waste tea was then activated with CO2 or urea. FE-SEM, HR-TEM, XPS, and Raman analyses were performed to investigate the morphology and the physicochemical properties of the electrocatalysts. The ORR activity and methanol tolerance of the Fe-N-C electrocatalysts were tested in rotating ring disk electrode (RRDE), showing promising results in terms of mass activity, onset and half-wave potential in an alkaline environment. Two different short potential cycling protocols demonstrated the high stability of these Fe-N-C electrocatalysts, especially when compared with a 20 wt. % commercial Pt/C electrocatalyst.

Zago, S., Bartoli, M., Muhyuddin, M., Vanacore, G., Jagdale, P., Tagliaferro, A., et al. (2022). Engineered biochar derived from pyrolyzed waste tea as a carbon support for Fe-N-C electrocatalysts for the oxygen reduction reaction. ELECTROCHIMICA ACTA, 412(20 April 2022) [10.1016/j.electacta.2022.140128].

Engineered biochar derived from pyrolyzed waste tea as a carbon support for Fe-N-C electrocatalysts for the oxygen reduction reaction

Muhyuddin M.;Vanacore G. M.;Santoro C.
Penultimo
;
2022

Abstract

Platinum metal group (PGM-free) electrocatalysts for oxygen reduction reaction (ORR) were synthesized by ball milling of activated biochar and Fe(II) phthalocyanine. The biochar used as a carbon support was produced from pyrolysis of waste tea leaves at 1500 °C in argon atmosphere. The pyrolyzed waste tea was then activated with CO2 or urea. FE-SEM, HR-TEM, XPS, and Raman analyses were performed to investigate the morphology and the physicochemical properties of the electrocatalysts. The ORR activity and methanol tolerance of the Fe-N-C electrocatalysts were tested in rotating ring disk electrode (RRDE), showing promising results in terms of mass activity, onset and half-wave potential in an alkaline environment. Two different short potential cycling protocols demonstrated the high stability of these Fe-N-C electrocatalysts, especially when compared with a 20 wt. % commercial Pt/C electrocatalyst.
Articolo in rivista - Articolo scientifico
Alkaline environment; Ball milling; Iron phthalocyanine; Methanol tolerance; Potential cycling;
English
1-mar-2022
2022
412
20 April 2022
140128
reserved
Zago, S., Bartoli, M., Muhyuddin, M., Vanacore, G., Jagdale, P., Tagliaferro, A., et al. (2022). Engineered biochar derived from pyrolyzed waste tea as a carbon support for Fe-N-C electrocatalysts for the oxygen reduction reaction. ELECTROCHIMICA ACTA, 412(20 April 2022) [10.1016/j.electacta.2022.140128].
File in questo prodotto:
File Dimensione Formato  
Electrochim Acta 412 2022 140128 - Zago_.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/380100
Citazioni
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 36
Social impact