Since the 1990s, a significant acceleration of rock glacier flow rates and of destabilizing phenomena have been documented in the European Alps in relation to constantly rising temperatures, soil warming and ice loss. Changing climatic conditions and the increase in air temperature strongly influence the thermal state of permafrost. Studies showed that ground surface temperature, together with the rock glacier external and internal characteristics, controls the deformation of frozen ground and the rock glacier flow velocities. Kinematic time series showed a correlation between rock glacier flow rates and air temperatures at seasonal, inter-annual and decennial time scales, while short-term velocity variations seem to be influenced by the hydrology of the rock glaciers. The thesis, composed of three main studies, examines the influence of some meteorological forcing and the processes controlling the evolution of rock glacier dynamics at multi spatio-temporal scales by means process-based modelling, data collection and analysis, and remote sensing techniques. For this purpose, high spatial resolution RGB data collected with drone platforms and direct in-situ measurements, related to thermal state of permafrost and hydrology, were conducted. The first study is related to the investigation of the rock glacier dynamics on interannual and multiannual time scales coupled with rising warming temperatures. First, the focus was set on assessing the accuracy of the Digital Surface Models (DSMs) and on evaluating systematic errors that may affect the drone-SfM derived data. Once the recipe to derive accurate datasets was found, the dense point clouds, the orthoimages and the DSMs were processed to derive 2D and 3D surface velocity fields, using a feature-tracking algorithm and the Multiscale Model to Model Cloud Comparison algorithm. Successively, the relationship between horizontal surface velocities, extension of frozen ground at depth and thermal state of permafrost were investigated. The results showed that annual kinematics are related to the ground thermal regime, the subsurface ice is close to melting conditions and the investigated permafrost appears to be in imbalance with the current climatic conditions. The second study investigates the dynamics response of rock glacier dynamics using an image correlation algorithm on orthoimages. Then the creep rates were evaluated as a function of the rock glacier geometry and material properties using the Bulk Creep Factor (BCF). The results showed that the variability in the horizontal surface velocities can be explained by the rheological properties but a unique relation with the surface slope angle, which in turn is not directly related to BCFs, cannot be found. The creeping process increases with the BCFs, reaching large values (BCF < 20) and aspect (discontinuous values) typical of rock glaciers experiencing destabilization behaviour. Given the fast-moving phase, the advancement of the front line and the front toe of the rock glacier, the formation fissures, and the contrasting spatial distribution in the BCFs, the rock glacier could be considered a destabilised rock glacier. The third study quantifies the rock glacier contribution on the catchment runoff and investigates the rock glacier groundwater circulation. Salt injections on the mainstream of the investigated area, artificial dye tracers inputs on the rock glacier surface were performed. This information was then integrated with electrical conductivity (EC) measurements and water temperature. The analysis highlights the hydrological relevance of the rock glacier as a complex geomorphological feature with important water storage capabilities. The EC contribution of the rock glacier is lowest in early summer and successively increases towards early autumn. Low temperature of the water discharge of the rock glacier suggests that the water flow is in contact with permafrost and can lower the stream water temperature.

Nelle Alpi è stata documentata un incremento delle velocità di scorrimento dei rock glacier e dei fenomeni di destabilizzazione in relazione all’aumento delle temperature, al riscaldamento del suolo e alla perdita di ghiaccio. Il cambiamento delle condizioni climatiche e l'aumento della temperatura dell'aria influenzano lo stato termico del permafrost. Gli studi hanno dimostrato che la temperatura della superficie del suolo, insieme alle caratteristiche esterne e interne del rock glacier, controlla la deformazione del permafrost e le velocità di flusso dei rock glaciers. Le serie temporali mostrano una correlazione tra le velocità di flusso dei rock glaciers e le temperature dell'aria su scale temporali stagionali, interannuali e decennali, mentre le variazioni di velocità a breve termine sono influenzate dall'idrologia. La tesi esamina l'influenza di alcune forzature meteorologiche e i processi che controllano l'evoluzione della dinamica dei rock glaciers a più scale spazio-temporali attraverso la modellazione basata sui processi, la raccolta e l'analisi dei dati e le tecniche di rilevamento remoto. A questo scopo, sono stati ottenuti dati RGB ad alta risoluzione spaziale raccolti con droni e misure dirette in situ, relative allo stato termico del permafrost e all'idrologia. Il primo studio è legato all'indagine delle dinamiche di un rock glacier su scale temporali interannuali e pluriennali accoppiate all'aumento delle temperature. Prima, l'attenzione è stata posta sulla valutazione della precisione dei modelli digitali di superficie (DSM) e sulla valutazione degli errori sistematici che possono influenzare i dati. Successivamente le nuvole di punti densi, le ortoimmagini e i DSM sono stati elaborati per derivare campi di velocità superficiale 2D e 3D, utilizzando un algoritmo di feature-tracking e l'algoritmo M3C2. Sono state studiate le relazioni tra le velocità superficiali, l'estensione e lo stato termico del permafrost. I risultati hanno mostrato che la cinematica annuale è legata al regime termico del suolo, il permafrost sotto la superficie è vicino alle condizioni di fusione e il permafrost studiato sembra essere in squilibrio con le condizioni climatiche attuali. Il secondo studio indaga la risposta dinamica di un rock glacier utilizzando un algoritmo di correlazione su ortoimmagini. I tassi di scorrimento sono stati poi valutati in funzione della geometria del rock glacier e delle proprietà del materiale utilizzando il Bulk Creep Factor (BCF). I risultati hanno mostrato che la variabilità delle velocità della superficie orizzontale può essere spiegata dalle proprietà reologiche, ma non è possibile trovare una relazione univoca con l'angolo di pendenza della superficie, che a sua volta non è direttamente correlato al BCF. Le velocità aumentano con i BCFs, raggiungendo grandi valori (BCF < 20) e aspetto (valori discontinui) tipici dei rock glaciers che sperimentano un comportamento di destabilizzazione. Data la fase di rapido movimento, l'avanzamento della linea frontale, la formazione di fessure e la distribuzione spaziale contrastante nei BCFs, il rock glacier è un rock glacier destabilizzato. Il terzo quantifica il contributo del rock glacier sul deflusso del bacino e indaga la circolazione delle acque sotterranee del rock glacier. Sono state eseguite iniezioni di sale sulla corrente principale dell'area studiata e immissioni di coloranti artificiali sulla superficie del rock glacier. Questi dati sono stati integrati con misure di conducibilità elettrica (EC) e temperatura dell'acqua. Le analisi evidenziano l’importante capacità di stoccaggio dell'acqua del rock glacier. Il contributo EC del rock glacier è più basso all'inizio dell'estate e aumenta successivamente verso l'inizio dell'autunno. La bassa temperatura dell’acqua del rock glacier suggerisce che il flusso dell'acqua è in contatto con il permafrost e può abbassare la temperatura dell'acqua del torrente.

(2022). Alpine rock glaciers: surface dynamics and role in stream hydrology. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).

Alpine rock glaciers: surface dynamics and role in stream hydrology

BEARZOT, FRANCESCA
2022

Abstract

Since the 1990s, a significant acceleration of rock glacier flow rates and of destabilizing phenomena have been documented in the European Alps in relation to constantly rising temperatures, soil warming and ice loss. Changing climatic conditions and the increase in air temperature strongly influence the thermal state of permafrost. Studies showed that ground surface temperature, together with the rock glacier external and internal characteristics, controls the deformation of frozen ground and the rock glacier flow velocities. Kinematic time series showed a correlation between rock glacier flow rates and air temperatures at seasonal, inter-annual and decennial time scales, while short-term velocity variations seem to be influenced by the hydrology of the rock glaciers. The thesis, composed of three main studies, examines the influence of some meteorological forcing and the processes controlling the evolution of rock glacier dynamics at multi spatio-temporal scales by means process-based modelling, data collection and analysis, and remote sensing techniques. For this purpose, high spatial resolution RGB data collected with drone platforms and direct in-situ measurements, related to thermal state of permafrost and hydrology, were conducted. The first study is related to the investigation of the rock glacier dynamics on interannual and multiannual time scales coupled with rising warming temperatures. First, the focus was set on assessing the accuracy of the Digital Surface Models (DSMs) and on evaluating systematic errors that may affect the drone-SfM derived data. Once the recipe to derive accurate datasets was found, the dense point clouds, the orthoimages and the DSMs were processed to derive 2D and 3D surface velocity fields, using a feature-tracking algorithm and the Multiscale Model to Model Cloud Comparison algorithm. Successively, the relationship between horizontal surface velocities, extension of frozen ground at depth and thermal state of permafrost were investigated. The results showed that annual kinematics are related to the ground thermal regime, the subsurface ice is close to melting conditions and the investigated permafrost appears to be in imbalance with the current climatic conditions. The second study investigates the dynamics response of rock glacier dynamics using an image correlation algorithm on orthoimages. Then the creep rates were evaluated as a function of the rock glacier geometry and material properties using the Bulk Creep Factor (BCF). The results showed that the variability in the horizontal surface velocities can be explained by the rheological properties but a unique relation with the surface slope angle, which in turn is not directly related to BCFs, cannot be found. The creeping process increases with the BCFs, reaching large values (BCF < 20) and aspect (discontinuous values) typical of rock glaciers experiencing destabilization behaviour. Given the fast-moving phase, the advancement of the front line and the front toe of the rock glacier, the formation fissures, and the contrasting spatial distribution in the BCFs, the rock glacier could be considered a destabilised rock glacier. The third study quantifies the rock glacier contribution on the catchment runoff and investigates the rock glacier groundwater circulation. Salt injections on the mainstream of the investigated area, artificial dye tracers inputs on the rock glacier surface were performed. This information was then integrated with electrical conductivity (EC) measurements and water temperature. The analysis highlights the hydrological relevance of the rock glacier as a complex geomorphological feature with important water storage capabilities. The EC contribution of the rock glacier is lowest in early summer and successively increases towards early autumn. Low temperature of the water discharge of the rock glacier suggests that the water flow is in contact with permafrost and can lower the stream water temperature.
FRATTINI, PAOLO
ROSSINI, MICOL
permafrost; ghiacciaio roccioso; effetto termico; telerilevamento; idrologia
permafrost; rock glacier; thermal effect; remote sensing; idrologia
GEO/04 - GEOGRAFIA FISICA E GEOMORFOLOGIA
Italian
29-apr-2022
SCIENZE CHIMICHE, GEOLOGICHE E AMBIENTALI
34
2020/2021
open
(2022). Alpine rock glaciers: surface dynamics and role in stream hydrology. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_848251.pdf

accesso aperto

Descrizione: Alpine rock glaciers: surface dynamics and role in stream hydrology
Tipologia di allegato: Doctoral thesis
Dimensione 4.32 MB
Formato Adobe PDF
4.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/374729
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact