Urban areas rely on subsurface resources to produce drinking water and extract low enthalpy geothermal energy. However, atmospheric and subsurface environment modifications by climate change and/or human activities affect the physical-chemical conditions such as the groundwater thermal regime. The subsurface urban heat island (SUHI) effect was documented in several cities worldwide with 2 to 8°C warmer temperatures than in suburban areas and warming trends were linked to global warming and urbanization. Highly developed cities are more impacted due to the superimposition of anthropogenic heat sources (e.g. building basements, asphalted surfaces, tunnels, geothermal installations), and positive (e.g. heating potential) and negative (e.g. thermal pollution) implications for groundwater uses exist. Thus, monitoring and modeling tools are mandatory to disentangle the complex superimposition of positive/negative heat flows from natural/anthropogenic sources and assess the future evolution. Moreover, EU objectives on climate change mitigation are focused on the development of renewable energies to reduce greenhouse gas emissions. Low enthalpy geothermal energy is considered a valid alternative to common heating/cooling techniques as it is available almost everywhere and has a low carbon footprint, especially where thermal energy is supplied by fossil fuels. The Milan city area (MCA) is one of the most densely populated and industrialized regions in Europe and, consequently, has a very high thermal power demand. Moreover, many activities related to urbanization contribute to modify the groundwater environment but their effects on the subsurface thermal status have never been assessed. In the first part of this study, the low enthalpy geothermal potential of the shallow aquifers was assessed at regional scale. Advantageous hydrogeological characteristics (e.g. highly conductive aquifers) were mapped and different analytical solutions used to estimate the thermal potential of ground coupled (GCHP) and groundwater (GWHP) heat pumps. The potential of GCHP was estimated considering subsurface hydraulic/thermal parameters and temperature, climatic data and borehole characteristics. The potential of GWHP was estimated considering the water drawdown and temperature drop allowed by regulation. The results were compared with heat demand rates on a municipal basis and the most profitable configuration was discussed. Successively, the extent and intensity of the SUHI in the MCA was assessed. Natural and anthropogenic controls on groundwater temperatures were revealed analyzing head and temperature records, and the occurrence of an up to 3° C intense SUHI was demonstrated. Vertical heat fluxes to the aquifer are strongly related to the groundwater depth and density of surface structures/infrastructures. This heat accumulation is reflected by a constant warming trend between +0.1 and +0.4 °C/y leading up to a +25 MJ/m2/y heat storage by densely distributed heat sources. Furthermore, the effects of urbanization, SUHI and physical-chemical conditions on the microbiological abundance were assessed by a flow cytometry analysis. Finally, a holistic city-scale fluid flow and heat transport FEM model was developed focusing on (I) the reconstruction of large-scale aquifer heterogeneities to consider the advective dominated heat transport, (II) the definition of the upper thermal boundary by a coupled analytical solution and (III) the integration of natural and human-related fluid/heat sources as transient boundary conditions. A fluid/heat budget analysis revealed the heat flow from buildings, infrastructures and tunnels contributes to 85% of the net annual heat accumulation (1.4 PJ/y). The thermal potential was evaluated numerically, and it was demonstrated that future climate change and city expansion could lead to the highest subsurface warming compared to shallow geothermic development which, for this reason, should be highly supported.

Le risorse sotterranee sono essenziali per l’approvvigionamento idrico ed energetico nelle aree urbane. Tuttavia, le attività umane modificano l’assetto naturale del sottosuolo alterandone le condizioni chimico-fisiche, tra cui il regime termico. L'effetto isola di calore nel sottosuolo (SUHI) è stato osservato in diverse città del mondo con temperature da 2 a 8°C più calde rispetto alle aree suburbane, e trend di riscaldamento sono riconducibili al cambiamento climatico e all’urbanizzazione. Infatti, le città ben sviluppate sono anche più colpite a causa della sovrapposizione di fonti di calore antropiche come i seminterrati degli edifici, le superfici asfaltate, i tunnel e gli impianti geotermici. Tale fenomeno ha implicazioni positive (es: maggior efficienza del riscaldamento con geotermia) e negative (es: l'inquinamento termico) sulle acque sotterranee, e l’integrazione di tecniche di monitoraggio e modellazione è fondamentale per quantificare i contributi di calore naturale/antropico in un ambiente complesso e valutarne l'evoluzione futura. Inoltre, gli obiettivi dell'UE sulla mitigazione del cambiamento climatico si concentrano sullo sviluppo di energie rinnovabili per ridurre le emissioni di gas serra. Tra queste, l’energia geotermica superficiale è considerata una valida alternativa ai sistemi di condizionamento tradizionali in quanto è disponibile quasi ovunque ed ha un bassissimo impatto. L'area metropolitana di Milano è una delle regioni maggiormente popolate d'Europa e ha una domanda energetica molto alta. Inoltre, molte attività legate all'urbanizzazione hanno contribuito ad alterarne la superficie e il sottosuolo, ma una valutazione dello stato termico tutt’ora non esiste. Nella prima parte di questo studio, si è stimato il potenziale geotermico a bassa entalpia a scala regionale integrando dati climatici e parametri idrogeologici/termici del sottosuolo. Tramite soluzioni analitiche si è calcolato il potenziale di impianti a circuito chiuso e aperto, considerando: per i primi, i parametri, la temperatura del sottosuolo, e le caratteristiche dello scambiatore, mentre per secondi, l’abbassamento piezometrico e il salto di temperatura ammessi dalla normativa regionale. I risultati sono stati confrontati con gli usi energetici attuali su base comunale, suggerendo la configurazione più favorevole. Nella seconda parte, si dimostra l'estensione dell’isola di calore sotterranea, di intensità fino a 3°C nella città di Milano. L’analisi spazio-temporale dei record di soggiacenza e temperatura ha messo in luce il ruolo dei principali fattori naturali e antropici: il flusso di calore verso l’acquifero è più intenso dove la tavola d’acqua è superficiale e strutture/infrastrutture antropiche sono densamente distribuite. Questo accumulo di calore si riflette in un trend tra +0.1 e +0.4 °C/a che porta fino a +25 MJ/m2/a nel sottosuolo del centro città. Inoltre, sono anche stati osservati gli effetti dell'urbanizzazione sull'abbondanza microbiologica nella falda superficiale. Infine, è stato sviluppato il primo modello numerico (FEM) di flusso e trasporto di calore alla scala urbana, focalizzandosi su (I) la ricostruzione delle eterogeneità del sottosuolo per simulare il trasporto di calore advettivo, (II) una soluzione analitica accoppiata per definire la condizione al contorno termica alla superficie e (III) l'integrazione di molteplici sorgenti di calore naturali/antropiche. Dalla simulazione dello stato attuale emerge che il flusso di calore dagli edifici e dalle infrastrutture/gallerie contribuisce all'85% dell'accumulo di calore annuale (1.4 PJ). Inoltre, il potenziale termico è stato valutato anche numericamente, e si è dimostrato che l’aumento di calore sotterraneo dovuto ai possibili effetti del riscaldamento globale e dell’espansione urbana è ben maggiore rispetto allo sviluppo geotermico che, per questo motivo, dovrebbe essere valorizzato.

(2022). The subsurface urban heat island in Milan – Anthropogenic heat sources and city-scale modeling of present and future scenarios. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).

The subsurface urban heat island in Milan – Anthropogenic heat sources and city-scale modeling of present and future scenarios

PREVIATI, ALBERTO
2022

Abstract

Urban areas rely on subsurface resources to produce drinking water and extract low enthalpy geothermal energy. However, atmospheric and subsurface environment modifications by climate change and/or human activities affect the physical-chemical conditions such as the groundwater thermal regime. The subsurface urban heat island (SUHI) effect was documented in several cities worldwide with 2 to 8°C warmer temperatures than in suburban areas and warming trends were linked to global warming and urbanization. Highly developed cities are more impacted due to the superimposition of anthropogenic heat sources (e.g. building basements, asphalted surfaces, tunnels, geothermal installations), and positive (e.g. heating potential) and negative (e.g. thermal pollution) implications for groundwater uses exist. Thus, monitoring and modeling tools are mandatory to disentangle the complex superimposition of positive/negative heat flows from natural/anthropogenic sources and assess the future evolution. Moreover, EU objectives on climate change mitigation are focused on the development of renewable energies to reduce greenhouse gas emissions. Low enthalpy geothermal energy is considered a valid alternative to common heating/cooling techniques as it is available almost everywhere and has a low carbon footprint, especially where thermal energy is supplied by fossil fuels. The Milan city area (MCA) is one of the most densely populated and industrialized regions in Europe and, consequently, has a very high thermal power demand. Moreover, many activities related to urbanization contribute to modify the groundwater environment but their effects on the subsurface thermal status have never been assessed. In the first part of this study, the low enthalpy geothermal potential of the shallow aquifers was assessed at regional scale. Advantageous hydrogeological characteristics (e.g. highly conductive aquifers) were mapped and different analytical solutions used to estimate the thermal potential of ground coupled (GCHP) and groundwater (GWHP) heat pumps. The potential of GCHP was estimated considering subsurface hydraulic/thermal parameters and temperature, climatic data and borehole characteristics. The potential of GWHP was estimated considering the water drawdown and temperature drop allowed by regulation. The results were compared with heat demand rates on a municipal basis and the most profitable configuration was discussed. Successively, the extent and intensity of the SUHI in the MCA was assessed. Natural and anthropogenic controls on groundwater temperatures were revealed analyzing head and temperature records, and the occurrence of an up to 3° C intense SUHI was demonstrated. Vertical heat fluxes to the aquifer are strongly related to the groundwater depth and density of surface structures/infrastructures. This heat accumulation is reflected by a constant warming trend between +0.1 and +0.4 °C/y leading up to a +25 MJ/m2/y heat storage by densely distributed heat sources. Furthermore, the effects of urbanization, SUHI and physical-chemical conditions on the microbiological abundance were assessed by a flow cytometry analysis. Finally, a holistic city-scale fluid flow and heat transport FEM model was developed focusing on (I) the reconstruction of large-scale aquifer heterogeneities to consider the advective dominated heat transport, (II) the definition of the upper thermal boundary by a coupled analytical solution and (III) the integration of natural and human-related fluid/heat sources as transient boundary conditions. A fluid/heat budget analysis revealed the heat flow from buildings, infrastructures and tunnels contributes to 85% of the net annual heat accumulation (1.4 PJ/y). The thermal potential was evaluated numerically, and it was demonstrated that future climate change and city expansion could lead to the highest subsurface warming compared to shallow geothermic development which, for this reason, should be highly supported.
FRATTINI, PAOLO
CROSTA, GIOVANNI
Acque sotterranee; Geoenergia; Regime termico; Urbanizzazione; Modellazione FEM
Groundwater; Geothermal potential; Thermal regime; Urbanization; Modellazione FEM
GEO/05 - GEOLOGIA APPLICATA
English
17-feb-2022
SCIENZE CHIMICHE, GEOLOGICHE E AMBIENTALI
34
2020/2021
open
(2022). The subsurface urban heat island in Milan – Anthropogenic heat sources and city-scale modeling of present and future scenarios. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_764521.pdf

accesso aperto

Descrizione: Tesi di Previati Alberto - 764521
Tipologia di allegato: Doctoral thesis
Dimensione 17.78 MB
Formato Adobe PDF
17.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/366244
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact