Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA LE MODIFICHE in fondo alla pagina
Bicocca Open Archive
Mesons comprising a beauty quark and strange quark can oscillate between particle (Bs0) and antiparticle (B¯s0) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, Δms. Here we present a measurement of Δms using Bs0→Ds−π+ decays produced in proton–proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be Δms = 17.7683 ± 0.0051 ± 0.0032 ps−1, where the first uncertainty is statistical and the second is systematic. This measurement improves on the current Δms precision by a factor of two. We combine this result with previous LHCb measurements to determine Δms = 17.7656 ± 0.0057 ps−1, which is the legacy measurement of the original LHCb detector.
Aaij, R., Beteta, C., Ackernley, T., Adeva, B., Adinolfi, M., Afsharnia, H., et al. (2022). Precise determination of the Bs0 – B¯s0 oscillation frequency. NATURE PHYSICS, 18(1) [10.1038/s41567-021-01394-x].
Precise determination of the Bs0 – B¯s0 oscillation frequency
Aaij R.;Beteta C. A.;Ackernley T.;Adeva B.;Adinolfi M.;Afsharnia H.;Aidala C. A.;Aiola S.;Ajaltouni Z.;Akar S.;Albrecht J.;Alessio F.;Alexander M.;Albero A. A.;Aliouche Z.;Alkhazov G.;Cartelle P. A.;Amato S.;Amhis Y.;An L.;Anderlini L.;Andreianov A.;Andreotti M.;Archilli F.;Artamonov A.;Artuso M.;Arzymatov K.;Aslanides E.;Atzeni M.;Audurier B.;Bachmann S.;Bachmayer M.;Back J. J.;Rodriguez P. B.;Balagura V.;Baldini W.;Leite J. B.;Barlow R. J.;Barsuk S.;Barter W.;Bartolini M.;Baryshnikov F.;Basels J. M.;Bassi G.;Batsukh B.;Battig A.;Bay A.;Becker M.;Bedeschi F.;Bediaga I.;Beiter A.;Belavin V.;Belin S.;Bellee V.;Belous K.;Belov I.;Belyaev I.;Bencivenni G.;Ben-Haim E.;Berezhnoy A.;Bernet R.;Berninghoff D.;Bernstein H. C.;Bertella C.;Bertolin A.;Betancourt C.;Betti F.;Bezshyiko I.;Bhasin S.;Bhom J.;Bian L.;Bieker M. S.;Bifani S.;Billoir P.;Birch M.;Bishop F. C. R.;Bitadze A.;Bizzeti A.;Bjorn M.;Blago M. P.;Blake T.;Blanc F.;Blusk S.;Bobulska D.;Boelhauve J. A.;Garcia O. B.;Boettcher T.;Boldyrev A.;Bondar A.;Bondar N.;Borghi S.;Borisyak M.;Borsato M.;Borsuk J. T.;Bouchiba S. A.;Bowcock T. J. V.;Boyer A.;Bozzi C.;Bradley M. J.;Braun S.;Rodriguez A. B.;Brodski M.;Brodzicka J.;Gonzalo A. B.;Brundu D.;Buonaura A.;Burr C.;Bursche A.;Butkevich A.;Butter J. S.;Buytaert J.;Byczynski W.;Cadeddu S.;Cai H.;Calabrese R.;Calefice L.;Diaz L. C.;Cali S.;Calladine R.;Calvi M.;Gomez M. C.;Magalhaes P. C.;Camboni A.;Campana P.;Quezada A. F. C.;Capelli S.;Capriotti L.;Carbone A.;Carboni G.;Cardinale R.;Cardini A.;Carli I.;Carniti P.;Carus L.;Akiba K. C.;Vidal A. C.;Casse G.;Cattaneo M.;Cavallero G.;Celani S.;Cerasoli J.;Chadwick A. J.;Chapman M. G.;Charles M.;Charpentier P.;Chatzikonstantinidis G.;Barajas C. A. C.;Chefdeville M.;Chen C.;Chen S.;Chernov A.;Chobanova V.;Cholak S.;Chrzaszcz M.;Chubykin A.;Chulikov V.;Ciambrone P.;Cicala M. F.;Vidal X. C.;Ciezarek G.;Clarke P. E. L.;Clemencic M.;Cliff H. V.;Closier J.;Cobbledick J. L.;Coco V.;Coelho J. A. B.;Cogan J.;Cogneras E.;Cojocariu L.;Collins P.;Colombo T.;Congedo L.;Contu A.;Cooke N.;Coombs G.;Corti G.;Sobral C. M. C.;Couturier B.;Craik D. C.;Crkovska J.;Torres M. C.;Currie R.;Da Silva C. L.;Dall'Occo E.;Dalseno J.;D'Ambrosio C.;Danilina A.;d'Argent P.;Davis A.;De Aguiar Francisco O.;De Bruyn K.;De Capua S.;De Cian M.;De Miranda J. M.;De Paula L.;De Serio M.;De Simone D.;De Simone P.;de Vries J. A.;Dean C. T.;Decamp D.;Del Buono L.;Delaney B.;Dembinski H. -P.;Dendek A.;Denysenko V.;Derkach D.;Deschamps O.;Desse F.;Dettori F.;Dey B.;Di Nezza P.;Didenko S.;Maronas L. D.;Dijkstra H.;Dobishuk V.;Donohoe A. M.;Dordei F.;dos Reis A. C.;Douglas L.;Dovbnya A.;Downes A. G.;Dreimanis K.;Dudek M. W.;Dufour L.;Duk V.;Durante P.;Durham J. M.;Dutta D.;Dziurda A.;Dzyuba A.;Easo S.;Egede U.;Egorychev V.;Eidelman S.;Eisenhardt S.;Ek-In S.;Eklund L.;Ely S.;Ene A.;Epple E.;Escher S.;Eschle J.;Esen S.;Evans T.;Falabella A.;Fan J.;Fan Y.;Fang B.;Farry S.;Fazzini D.;Feo M.;Prieto A. F.;Arribas J. M. F. -T.;Fernez A. D.;Ferrari F.;Lopes L. F.;Rodrigues F. F.;Sole S. F.;Ferrillo M.;Ferro-Luzzi M.;Filippov S.;Fini R. A.;Fiorini M.;Firlej M.;Fischer K. M.;Fitzgerald D. S.;Fitzpatrick C.;Fiutowski T.;Fleuret F.;Fontana M.;Fontanelli F.;Forty R.;Lima V. F.;Sevilla M. F.;Frank M.;Franzoso E.;Frau G.;Frei C.;Friday D. A.;Fu J.;Fuehring Q.;Funk W.;Gabriel E.;Gaintseva T.;Torreira A. G.;Galli D.;Gambetta S.;Gan Y.;Gandelman M.;Gandini P.;Gao Y.;Garau M.;Martin L. M. G.;Moreno P. G.;Pardinas J. G.;Plana B. G.;Rosales F. A. G.;Garrido L.;Gaspar C.;Geertsema R. E.;Gerick D.;Gerken L. L.;Gersabeck E.;Gersabeck M.;Gershon T.;Gerstel D.;Ghez P.;Gibson V.;Giemza H. K.;Giovannetti M.;Gioventu A.;Gironell P. G.;Giubega L.;Giugliano C.;Gizdov K.;Gkougkousis E. L.;Gligorov V. V.;Gobel C.;Golobardes E.;Golubkov D.;Golutvin A.;Gomes A.;Fernandez S. G.;Abrantes F. G.;Goncerz M.;Gong G.;Gorbounov P.;Gorelov I. V.;Gotti C.;Govorkova E.;Grabowski J. P.;Grammatico T.;Cardoso L. A. G.;Grauges E.;Graverini E.;Graziani G.;Grecu A.;Greeven L. M.;Griffith P.;Grillo L.;Gromov S.;Cazon B. R. G.;Gu C.;Guarise M.;Gunther P. A.;Gushchin E.;Guth A.;Guz Y.;Gys T.;Hadavizadeh T.;Haefeli G.;Haen C.;Haimberger J.;Halewood-leagas T.;Hamilton P. M.;Hammerich J. P.;Han Q.;Han X.;Hancock T. H.;Hansmann-Menzemer S.;Harnew N.;Harrison T.;Hasse C.;Hatch M.;He J.;Hecker M.;Heijhoff K.;Heinicke K.;Hennequin A. M.;Hennessy K.;Henry L.;Heuel J.;Hicheur A.;Hill D.;Hilton M.;Hollitt S. E.;Hu J.;Hu J.;Hu W.;Huang W.;Huang X.;Hulsbergen W.;Hunter R. J.;Hushchyn M.;Hutchcroft D.;Hynds D.;Ibis P.;Idzik M.;Ilin D.;Ilten P.;Inglessi A.;Ishteev A.;Ivshin K.;Jacobsson R.;Jakobsen S.;Jans E.;Jashal B. K.;Jawahery A.;Jevtic V.;Jezabek M.;Jiang F.;John M.;Johnson D.;Jones C. R.;Jones T. P.;Jost B.;Jurik N.;Kandybei S.;Kang Y.;Karacson M.;Karpov M.;Keizer F.;Kenzie M.;Ketel T.;Khanji B.;Kharisova A.;Kholodenko S.;Kirn T.;Kirsebom V. S.;Kitouni O.;Klaver S.;Klimaszewski K.;Koliiev S.;Kondybayeva A.;Konoplyannikov A.;Kopciewicz P.;Kopecna R.;Koppenburg P.;Korolev M.;Kostiuk I.;Kot O.;Kotriakhova S.;Kravchenko P.;Kravchuk L.;Krawczyk R. D.;Kreps M.;Kress F.;Kretzschmar S.;Krokovny P.;Krupa W.;Krzemien W.;Kucewicz W.;Kucharczyk M.;Kudryavtsev V.;Kuindersma H. S.;Kunde G. J.;Kvaratskheliya T.;Lacarrere D.;Lafferty G.;Lai A.;Lampis A.;Lancierini D.;Lane J. J.;Lane R.;Lanfranchi G.;Langenbruch C.;Langer J.;Lantwin O.;Latham T.;Lazzari F.;Le Gac R.;Lee S. H.;Lefevre R.;Leflat A.;Legotin S.;Leroy O.;Lesiak T.;Leverington B.;Li H.;Li L.;Li P.;Li S.;Li Y.;Li Y.;Li Z.;Liang X.;Lin T.;Lindner R.;Lisovskyi V.;Litvinov R.;Liu G.;Liu H.;Liu S.;Liu X.;Loi A.;Castro J. L.;Longstaff I.;Lopes J. H.;Lovell G. H.;Lu Y.;Lucchesi D.;Luchuk S.;Martinez M. L.;Lukashenko V.;Luo Y.;Lupato A.;Luppi E.;Lupton O.;Lusiani A.;Lyu X.;Ma L.;Ma R.;Maccolini S.;Machefert F.;Maciuc F.;Macko V.;Mackowiak P.;Maddrell-Mander S.;Madejczyk O.;Mohan L. R. M.;Maev O.;Maevskiy A.;Maisuzenko D.;Majewski M. W.;Malczewski J. J.;Malde S.;Malecki B.;Malinin A.;Maltsev T.;Malygina H.;Manca G.;Mancinelli G.;Manuzzi D.;Marangotto D.;Maratas J.;Marchand J. F.;Marconi U.;Mariani S.;Benito C. M.;Marinangeli M.;Marks J.;Marshall A. M.;Marshall P. J.;Martellotti G.;Martinazzoli L.;Martinelli M.;Santos D. M.;Vidal F. M.;Massafferri A.;Materok M.;Matev R.;Mathad A.;Mathe Z.;Matiunin V.;Matteuzzi C.;Mattioli K. R.;Mauri A.;Maurice E.;Mauricio J.;Mazurek M.;McCann M.;Mcconnell L.;Mcgrath T. H.;McNab A.;McNulty R.;Mead J. V.;Meadows B.;Meaux C.;Meier G.;Meinert N.;Melnychuk D.;Meloni S.;Merk M.;Merli A.;Garcia L. M.;Mikhasenko M.;Milanes D. A.;Millard E.;Milovanovic M.;Minard M. -N.;Minotti A.;Minzoni L.;Mitchell S. E.;Mitreska B.;Mitzel D. S.;Modden A.;Mohammed R. A.;Moise R. D.;Mombacher T.;Monroy I. A.;Monteil S.;Morandin M.;Morello G.;Morello M. J.;Moron J.;Morris A. B.;Morris A. G.;Mountain R.;Mu H.;Muheim F.;Mulder M.;Muller D.;Muller K.;Murphy C. H.;Murray D.;Muzzetto P.;Naik P.;Nakada T.;Nandakumar R.;Nanut T.;Nasteva I.;Needham M.;Neri I.;Neri N.;Neubert S.;Neufeld N.;Newcombe R.;Nguyen T. D.;Nguyen-Mau C.;Niel E. M.;Nieswand S.;Nikitin N.;Nolte N. S.;Nunez C.;Oblakowska-Mucha A.;Obraztsov V.;O'Hanlon D. P.;Oldeman R.;Olivares M. E.;Onderwater C. J. G.;Ossowska A.;Goicochea J. M. O.;Ovsiannikova T.;Owen P.;Oyanguren A.;Pagare B.;Pais P. R.;Pajero T.;Palano A.;Palutan M.;Pan Y.;Panshin G.;Papanestis A.;Pappagallo M.;Pappalardo L. L.;Pappenheimer C.;Parker W.;Parkes C.;Parkinson C. J.;Passalacqua B.;Passaleva G.;Pastore A.;Patel M.;Patrignani C.;Pawley C. J.;Pearce A.;Pellegrino A.;Altarelli M. P.;Perazzini S.;Pereima D.;Perret P.;Petric M.;Petridis K.;Petrolini A.;Petrov A.;Petrucci S.;Petruzzo M.;Pham T. T. H.;Philippov A.;Pica L.;Piccini M.;Pietrzyk B.;Pietrzyk G.;Pili M.;Pinci D.;Pisani F.;Resmi P. K.;Placinta V.;Plews J.;Casasus M. P.;Polci F.;Lener M. P.;Poliakova M.;Poluektov A.;Polukhina N.;Polyakov I.;Polycarpo E.;Pomery G. J.;Ponce S.;Popov D.;Popov S.;Poslavskii S.;Prasanth K.;Promberger L.;Prouve C.;Pugatch V.;Pullen H.;Punzi G.;Qian W.;Qin J.;Quagliani R.;Quintana B.;Raab N. V.;Trejo R. I. R.;Rachwal B.;Rademacker J. H.;Rama M.;Pernas M. R.;Rangel M. S.;Ratnikov F.;Raven G.;Reboud M.;Redi F.;Reiss F.;Alepuz C. R.;Ren Z.;Renaudin V.;Ribatti R.;Ricciardi S.;Rinnert K.;Robbe P.;Robertson G.;Rodrigues A. B.;Rodrigues E.;Lopez J. A. R.;Rollings A.;Roloff P.;Romanovskiy V.;Lamas M. R.;Vidal A. R.;Roth J. D.;Rotondo M.;Rudolph M. S.;Ruf T.;Vidal J. R.;Ryzhikov A.;Ryzka J.;Silva J. J. S.;Sagidova N.;Sahoo N.;Saitta B.;Salomoni M.;Gonzalo D. S.;Gras C. S.;Santacesaria R.;Rios C. S.;Santimaria M.;Santovetti E.;Saranin D.;Sarpis G.;Sarpis M.;Sarti A.;Satriano C.;Satta A.;Saur M.;Savrina D.;Sazak H.;Smead L. G. S.;Schael S.;Schellenberg M.;Schiller M.;Schindler H.;Schmelling M.;Schmidt B.;Schneider O.;Schopper A.;Schubiger M.;Schulte S.;Schune M. H.;Schwemmer R.;Sciascia B.;Sellam S.;Semennikov A.;Soares M. S.;Sergi A.;Serra N.;Sestini L.;Seuthe A.;Seyfert P.;Shang Y.;Shangase D. M.;Shapkin M.;Shchemerov I.;Shchutska L.;Shears T.;Shekhtman L.;Shen Z.;Shevchenko V.;Shields E. B.;Shmanin E.;Shupperd J. D.;Siddi B. G.;Coutinho R. S.;Simi G.;Simone S.;Skidmore N.;Skwarnicki T.;Slater M. W.;Slazyk I.;Smallwood J. C.;Smeaton J. G.;Smetkina A.;Smith E.;Smith M.;Snoch A.;Soares M.;Lavra L. S.;Sokoloff M. D.;Soler F. J. P.;Solovev A.;Solovyev I.;De Almeida F. L. S.;De Paula B. S.;Spaan B.;Norella E. S.;Spradlin P.;Stagni F.;Stahl M.;Stahl S.;Stefko P.;Steinkamp O.;Stenyakin O.;Stevens H.;Stone S.;Stramaglia M. E.;Straticiuc M.;Strekalina D.;Suljik F.;Sun J.;Sun L.;Sun Y.;Svihra P.;Swallow P. N.;Swientek K.;Szabelski A.;Szumlak T.;Szymanski M.;Taneja S.;Teubert F.;Thomas E.;Thomson K. A.;Tisserand V.;T'Jampens S.;Tobin M.;Tomassetti L.;Machado D. T.;Tou D. Y.;Tran M. T.;Trifonova E.;Trippl C.;Tuci G.;Tully A.;Tuning N.;Ukleja A.;Unverzagt D. J.;Ursov E.;Usachov A.;Ustyuzhanin A.;Uwer U.;Vagner A.;Vagnoni V.;Valassi A.;Valenti G.;Canudas N. V.;van Beuzekom M.;Van Dijk M.;van Herwijnen E.;Van Hulse C. B.;van Veghel M.;Gomez R. V.;Regueiro P. V.;Sierra C. V.;Vecchi S.;Velthuis J. J.;Veltri M.;Venkateswaran A.;Veronesi M.;Vesterinen M.;Vieira D.;Diaz M. V.;Viemann H.;Vilasis-Cardona X.;Figueras E. V.;Vincent P.;Bruch D. V.;Vorobyev A.;Vorobyev V.;Voropaev N.;Waldi R.;Walsh J.;Wang C.;Wang J.;Wang J.;Wang J.;Wang J.;Wang M.;Wang R.;Wang Y.;Wang Z.;Wang Z.;Wark H. M.;Watson N. K.;Weber S. G.;Websdale D.;Weisser C.;Westhenry B. D. C.;White D. J.;Whitehead M.;Wiedner D.;Wilkinson G.;Wilkinson M.;Williams I.;Williams M.;Williams M. R. J.;Wilson F. F.;Wislicki W.;Witek M.;Witola L.;Wormser G.;Wotton S. A.;Wu H.;Wyllie K.;Xiang Z.;Xiao D.;Xie Y.;Xu A.;Xu J.;Xu L.;Xu M.;Xu Q.;Xu Z.;Xu Z.;Yang D.;Yang S.;Yang Y.;Yang Z.;Yang Z.;Yao Y.;Yeomans L. E.;Yin H.;Yu J.;Yuan X.;Yushchenko O.;Zaffaroni E.;Zavertyaev M.;Zdybal M.;Zenaiev O.;Zeng M.;Zhang D.;Zhang L.;Zhang S.;Zhang Y.;Zhang Y.;Zhelezov A.;Zheng Y.;Zhou X.;Zhou Y.;Zhu X.;Zhu Z.;Zhukov V.;Zonneveld J. B.;Zou Q.;Zucchelli S.;Zuliani D.;Zunica G.
2022
Abstract
Mesons comprising a beauty quark and strange quark can oscillate between particle (Bs0) and antiparticle (B¯s0) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, Δms. Here we present a measurement of Δms using Bs0→Ds−π+ decays produced in proton–proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be Δms = 17.7683 ± 0.0051 ± 0.0032 ps−1, where the first uncertainty is statistical and the second is systematic. This measurement improves on the current Δms precision by a factor of two. We combine this result with previous LHCb measurements to determine Δms = 17.7656 ± 0.0057 ps−1, which is the legacy measurement of the original LHCb detector.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/362358
Citazioni
32
35
Social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 598/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.