Word Sense Disambiguation is a longstanding task in Natural Language Processing, lying at the core of human language understanding. However, the evaluation of automatic systems has been problematic, mainly due to the lack of a reliable evaluation framework. In this paper we develop a unified evaluation framework and analyze the performance of various Word Sense Disambiguation systems in a fair setup. The results show that supervised systems clearly outperform knowledge-based models. Among the supervised systems, a linear classi- fier trained on conventional local features still proves to be a hard baseline to beat. Nonetheless, recent approaches exploiting neural networks on unlabeled corpora achieve promising results, surpassing this hard baseline in most test sets.
Raganato, A., Camacho-collados, J., Navigli, R. (2017). Word sense disambiguation: a uinified evaluation framework and empirical comparison. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers (pp.99-110). Association for Computational Linguistics [10.18653/v1/e17-1010].
Word sense disambiguation: a uinified evaluation framework and empirical comparison
Raganato, Alessandro
;
2017
Abstract
Word Sense Disambiguation is a longstanding task in Natural Language Processing, lying at the core of human language understanding. However, the evaluation of automatic systems has been problematic, mainly due to the lack of a reliable evaluation framework. In this paper we develop a unified evaluation framework and analyze the performance of various Word Sense Disambiguation systems in a fair setup. The results show that supervised systems clearly outperform knowledge-based models. Among the supervised systems, a linear classi- fier trained on conventional local features still proves to be a hard baseline to beat. Nonetheless, recent approaches exploiting neural networks on unlabeled corpora achieve promising results, surpassing this hard baseline in most test sets.File | Dimensione | Formato | |
---|---|---|---|
Raganato_Word_2017.pdf
Solo gestori archivio
Dimensione
275.96 kB
Formato
Adobe PDF
|
275.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.