Enrichment cultures on naphtha solvent were used to select aromatic hydrocarbon-degrading bacteria from a BTEX (benzene, toluene, ethylbenzene, xylene)-contaminated subsoil obtained from beneath a paint factory located in Milan, Italy. Fifteen isolated strains were studied for their different biodegradative capacities. Among these, 13 were able to grow on naphtha solvent. Ten were identified as Pseudomonas putida and three as Pseudomonas aureofaciens. Two other degraders were identified as Pseudomonas aeruginosa and Alcaligenes xylosoxidans subsp, denitrificans. Further molecular characterization of the isolates was carried out by randomly amplified polymorphic DNA analysis to ascertain that all the studied strains belonged to different haplotypes. The isolates were characterized for the presence of genes encoding for toluene dioxygenase, xylene monooxygenase and catechol 2,3-dioxygenase by polymerase chain reaction analysis and by Southern analysis. P, putida strain CM23, which showed homology with xylA,M, xylE and todC1C2BA genes, possessed multiple pathways which enabled the strain to grow on benzene, toluene and m-xylene. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
Cavalca, L., DI GENNARO, P., Colombo, M., Andreoni, V., Bernasconi, S., Ronco, I., et al. (2000). Distribution of catabolic pathways in some hydrocarbon-degrading bacteria from a subsurface polluted soil. RESEARCH IN MICROBIOLOGY, 151(10), 877-887 [10.1016/S0923-2508(00)01155-4].
Distribution of catabolic pathways in some hydrocarbon-degrading bacteria from a subsurface polluted soil
DI GENNARO, PATRIZIA;BESTETTI, GIUSEPPINA
2000
Abstract
Enrichment cultures on naphtha solvent were used to select aromatic hydrocarbon-degrading bacteria from a BTEX (benzene, toluene, ethylbenzene, xylene)-contaminated subsoil obtained from beneath a paint factory located in Milan, Italy. Fifteen isolated strains were studied for their different biodegradative capacities. Among these, 13 were able to grow on naphtha solvent. Ten were identified as Pseudomonas putida and three as Pseudomonas aureofaciens. Two other degraders were identified as Pseudomonas aeruginosa and Alcaligenes xylosoxidans subsp, denitrificans. Further molecular characterization of the isolates was carried out by randomly amplified polymorphic DNA analysis to ascertain that all the studied strains belonged to different haplotypes. The isolates were characterized for the presence of genes encoding for toluene dioxygenase, xylene monooxygenase and catechol 2,3-dioxygenase by polymerase chain reaction analysis and by Southern analysis. P, putida strain CM23, which showed homology with xylA,M, xylE and todC1C2BA genes, possessed multiple pathways which enabled the strain to grow on benzene, toluene and m-xylene. (C) 2000 Editions scientifiques et medicales Elsevier SAS.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.