Embodied theories assign experience a crucial role in shaping conceptual representations. Supporting evidence comes mostly from studies on concrete concepts, where e.g., motor expertise facilitated action concept processing. This study examined experience-dependent effects on abstract concept processing. We asked participants with high and low mathematical expertise to perform a lexical decision task on mathematical and nonmathematical abstract words, while acquiring event-related potentials. Analyses revealed an interaction of expertise and word type on the amplitude of a fronto-central N400 and a centro-parietal late positive component (LPC). For mathematical words, we found a trend for a lower N400 and a significantly higher LPC amplitude in experts compared to nonexperts. No differences between groups were found for nonmathematical words. The results suggest that expertise affects the processing stages of semantic integration and memory retrieval specifically for expertise-related concepts. This study supports the generalization of experience-dependent conceptual processing mechanisms to the abstract domain.
Bechtold, L., Bellebaum, C., Egan, S., Tettamanti, M., Ghio, M. (2019). The role of experience for abstract concepts: Expertise modulates the electrophysiological correlates of mathematical word processing. BRAIN AND LANGUAGE, 188, 1-10 [10.1016/j.bandl.2018.10.002].
The role of experience for abstract concepts: Expertise modulates the electrophysiological correlates of mathematical word processing
Tettamanti M.;
2019
Abstract
Embodied theories assign experience a crucial role in shaping conceptual representations. Supporting evidence comes mostly from studies on concrete concepts, where e.g., motor expertise facilitated action concept processing. This study examined experience-dependent effects on abstract concept processing. We asked participants with high and low mathematical expertise to perform a lexical decision task on mathematical and nonmathematical abstract words, while acquiring event-related potentials. Analyses revealed an interaction of expertise and word type on the amplitude of a fronto-central N400 and a centro-parietal late positive component (LPC). For mathematical words, we found a trend for a lower N400 and a significantly higher LPC amplitude in experts compared to nonexperts. No differences between groups were found for nonmathematical words. The results suggest that expertise affects the processing stages of semantic integration and memory retrieval specifically for expertise-related concepts. This study supports the generalization of experience-dependent conceptual processing mechanisms to the abstract domain.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.