Purpose: To externally validate and compare the performance of previously published diagnostic models developed to predict malignancy in adnexal masses. Experimental Design: We externally validated the diagnostic performance of 11 models developed by the International Ovarian Tumor Analysis (IOTA) group and 12 other (non-IOTA) models on 997 prospectively collected patients. The non-IOTA models included the original risk of malignancy index (RMI), three modified versions of the RMI, six logistic regression models, and two artificial neural networks. The ability of the models to discriminate between benign and malignant adnexal masses was expressed as the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and likelihood ratios (LR +, LR -). Results: Seven hundred and forty-two (74%) benign and 255 (26%) malignant masses were included. The IOTA models did better than the non-IOTA models (AUCs between 0.941 and 0.956 vs. 0.839 and 0.928). The difference in AUC between the best IOTA and the best non-IOTA model was 0.028 [95% confidence interval (CI), 0.011-0.044]. The AUC of the RMI was 0.911 (difference with the best IOTA model, 0.044; 95% CI, 0.024-0.064). The superior performance of the IOTA models was most pronounced in premenopausal patients but was also observed in postmenopausal patients. IOTA models were better able to detect stage I ovarian cancer. Conclusion: External validation shows that the IOTA models outperform other models, including the current reference test RMI, for discriminating between benign and malignant adnexal masses

Van Holsbeke, C., Van Calster, B., Bourne, T., Ajossa, S., Testa, A., Guerriero, S., et al. (2012). External validation of diagnostic models to estimate the risk of malignancy in adnexal masses. CLINICAL CANCER RESEARCH, 18(3), 815-825 [10.1158/1078-0432.CCR-11-0879].

External validation of diagnostic models to estimate the risk of malignancy in adnexal masses

FRUSCIO, ROBERT;LISSONI, ANDREA ALBERTO;
2012

Abstract

Purpose: To externally validate and compare the performance of previously published diagnostic models developed to predict malignancy in adnexal masses. Experimental Design: We externally validated the diagnostic performance of 11 models developed by the International Ovarian Tumor Analysis (IOTA) group and 12 other (non-IOTA) models on 997 prospectively collected patients. The non-IOTA models included the original risk of malignancy index (RMI), three modified versions of the RMI, six logistic regression models, and two artificial neural networks. The ability of the models to discriminate between benign and malignant adnexal masses was expressed as the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and likelihood ratios (LR +, LR -). Results: Seven hundred and forty-two (74%) benign and 255 (26%) malignant masses were included. The IOTA models did better than the non-IOTA models (AUCs between 0.941 and 0.956 vs. 0.839 and 0.928). The difference in AUC between the best IOTA and the best non-IOTA model was 0.028 [95% confidence interval (CI), 0.011-0.044]. The AUC of the RMI was 0.911 (difference with the best IOTA model, 0.044; 95% CI, 0.024-0.064). The superior performance of the IOTA models was most pronounced in premenopausal patients but was also observed in postmenopausal patients. IOTA models were better able to detect stage I ovarian cancer. Conclusion: External validation shows that the IOTA models outperform other models, including the current reference test RMI, for discriminating between benign and malignant adnexal masses
Articolo in rivista - Articolo scientifico
Sensitivity and Specificity; Young Adult; Ovarian Neoplasms; ROC Curve; Area Under Curve; Neural Networks (Computer); Humans; Aged; Child; Adnexal Diseases; Cross-Sectional Studies; Logistic Models; Aged, 80 and over; Risk Factors; Adult; Middle Aged; Adolescent; Female; Models, Theoretical
English
23-nov-2011
2012
18
3
815
825
none
Van Holsbeke, C., Van Calster, B., Bourne, T., Ajossa, S., Testa, A., Guerriero, S., et al. (2012). External validation of diagnostic models to estimate the risk of malignancy in adnexal masses. CLINICAL CANCER RESEARCH, 18(3), 815-825 [10.1158/1078-0432.CCR-11-0879].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/35587
Citazioni
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 64
Social impact