In this paper we propose an approach for computing multiple high-quality near-isometric dense correspondences between a pair of 3D shapes. Our method is fully automatic and does not rely on user-provided landmarks or descriptors. This allows us to analyze the full space of maps and extract multiple diverse and accurate solutions, rather than optimizing for a single optimal correspondence as done in most previous approaches. To achieve this, we propose a compact tree structure based on the spectral map representation for encoding and enumerating possible rough initializations, and a novel efficient approach for refining them to dense pointwise maps. This leads to a new method capable of both producing multiple high-quality correspondences across shapes and revealing the symmetry structure of a shape without a priori information. In addition, we demonstrate through extensive experiments that our method is robust and results in more accurate correspondences than state-of-the-art for shape matching and symmetry detection.
Ren, J., Melzi, S., Ovsjanikov, M., Wonka, P. (2020). MapTree: Recovering multiple solutions in the space of maps. ACM TRANSACTIONS ON GRAPHICS, 39(6), 1-17 [10.1145/3414685.3417800].
MapTree: Recovering multiple solutions in the space of maps
Melzi S.;
2020
Abstract
In this paper we propose an approach for computing multiple high-quality near-isometric dense correspondences between a pair of 3D shapes. Our method is fully automatic and does not rely on user-provided landmarks or descriptors. This allows us to analyze the full space of maps and extract multiple diverse and accurate solutions, rather than optimizing for a single optimal correspondence as done in most previous approaches. To achieve this, we propose a compact tree structure based on the spectral map representation for encoding and enumerating possible rough initializations, and a novel efficient approach for refining them to dense pointwise maps. This leads to a new method capable of both producing multiple high-quality correspondences across shapes and revealing the symmetry structure of a shape without a priori information. In addition, we demonstrate through extensive experiments that our method is robust and results in more accurate correspondences than state-of-the-art for shape matching and symmetry detection.File | Dimensione | Formato | |
---|---|---|---|
Ren-2020-ACM Transactions on Graphics-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
66.61 MB
Formato
Adobe PDF
|
66.61 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.