In a facile one-step approach, high surface area mesoporous silica powders are synthesized using ordinary salts for pore and morphology control during the sol-gel process. Applying tetraethyl orthosilicate (TEOS) as a reference system, the addition of high salt loads such as NaCl and ZnCl2 results in highly increased surface areas of up to 750 m2 g–1, predominantly in the mesopore range Besides the surface area, the pore volume and the pore size can be controlled by the salt amount as well as the salt nature, reaching values of 1.1 cm3 g–1 and 14 nm, respectively. Compared to standard processes, the herein presented synthesis is extremely simple: it only comprises the dissolution of TEOS and the respective salt in 1 m HCl, followed by solvent evaporation, salt removal through simple washing with water and drying. This way, no special equipment is required, no organic templates are to be employed, and the overall approach is highly efficient and sustainable.

Nistico', R., Magnacca, G., Antonietti, M., Fechler, N. (2014). “Salted Silica”: Sol-Gel Chemistry of Silica under Hypersaline Conditions. ZEITSCHRIFT FÜR ANORGANISCHE UND ALLGEMEINE CHEMIE, 640(3-4), 582-587 [10.1002/zaac.201300526].

“Salted Silica”: Sol-Gel Chemistry of Silica under Hypersaline Conditions

Nistico', R;
2014

Abstract

In a facile one-step approach, high surface area mesoporous silica powders are synthesized using ordinary salts for pore and morphology control during the sol-gel process. Applying tetraethyl orthosilicate (TEOS) as a reference system, the addition of high salt loads such as NaCl and ZnCl2 results in highly increased surface areas of up to 750 m2 g–1, predominantly in the mesopore range Besides the surface area, the pore volume and the pore size can be controlled by the salt amount as well as the salt nature, reaching values of 1.1 cm3 g–1 and 14 nm, respectively. Compared to standard processes, the herein presented synthesis is extremely simple: it only comprises the dissolution of TEOS and the respective salt in 1 m HCl, followed by solvent evaporation, salt removal through simple washing with water and drying. This way, no special equipment is required, no organic templates are to be employed, and the overall approach is highly efficient and sustainable.
Articolo in rivista - Articolo scientifico
Mesoporous materials; Salt-templating; Salting-in effect; Silica; Sol-gel synthesis;
English
2014
640
3-4
582
587
reserved
Nistico', R., Magnacca, G., Antonietti, M., Fechler, N. (2014). “Salted Silica”: Sol-Gel Chemistry of Silica under Hypersaline Conditions. ZEITSCHRIFT FÜR ANORGANISCHE UND ALLGEMEINE CHEMIE, 640(3-4), 582-587 [10.1002/zaac.201300526].
File in questo prodotto:
File Dimensione Formato  
2014_Nisticò_ZAAC.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 691.86 kB
Formato Adobe PDF
691.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/349766
Citazioni
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 15
Social impact