Humans hold a very accurate representation of the metrics of their body parts. Recent evidence shows that the spatial estimation of body parts length, as assessed through a bisection task, is even more accurate than that of non-corporeal extrapersonal objects (Sposito, Bolognini, Vallar, Posteraro, & Maravita (2009)). In the present paper we show that human participants estimate the mid-point of their forearm, which was kept in a radial posture, to be more distal following a 15-min training with a 60 cm-long tool as compared to pre tool-use. This outcome is compatible with an increased representation of the participants’ forearm length. Control experiments show that this result was not due to a mere distal proprioceptive shift induced by tool-use, and was not replicated following the use of a 20 cm-long, functionally irrelevant tool. These results strongly support the view that, although the inner knowledge of one's own body metrics appears to be one of the more stable features of body representation, body-space interactions requiring the use of tools that extend the natural range of action, entail measurable dynamic changes in the representation of body metrics.
Sposito, A., Bolognini, N., Vallar, G., Maravita, A. (2012). Extension of perceived arm length following tool-use: Clues to plasticity of body metrics. NEUROPSYCHOLOGIA, 50(9), 2187-2194 [10.1016/j.neuropsychologia.2012.05.022].
Extension of perceived arm length following tool-use: Clues to plasticity of body metrics
SPOSITO, AMBRA VALENTINA;BOLOGNINI, NADIA;VALLAR, GIUSEPPE;MARAVITA, ANGELO
2012
Abstract
Humans hold a very accurate representation of the metrics of their body parts. Recent evidence shows that the spatial estimation of body parts length, as assessed through a bisection task, is even more accurate than that of non-corporeal extrapersonal objects (Sposito, Bolognini, Vallar, Posteraro, & Maravita (2009)). In the present paper we show that human participants estimate the mid-point of their forearm, which was kept in a radial posture, to be more distal following a 15-min training with a 60 cm-long tool as compared to pre tool-use. This outcome is compatible with an increased representation of the participants’ forearm length. Control experiments show that this result was not due to a mere distal proprioceptive shift induced by tool-use, and was not replicated following the use of a 20 cm-long, functionally irrelevant tool. These results strongly support the view that, although the inner knowledge of one's own body metrics appears to be one of the more stable features of body representation, body-space interactions requiring the use of tools that extend the natural range of action, entail measurable dynamic changes in the representation of body metrics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.