We study the growth of group endomorphisms and we prove an analogue of Chou's extension of Milnor-Wolf Theorem. Indeed, if G is an elementary amenable group and ϕ:G→G is an endomorphism, then ϕ has either polynomial or exponential growth. This result follows by studying the growth of automorphisms of finitely generated groups, where we prove some stronger results.

Giordano Bruno, A., Spiga, P. (2020). Milnor-Wolf Theorem for group endomorphisms. JOURNAL OF ALGEBRA, 546(15 March 2020), 85-118 [10.1016/j.jalgebra.2019.10.037].

Milnor-Wolf Theorem for group endomorphisms

Spiga P.
2020

Abstract

We study the growth of group endomorphisms and we prove an analogue of Chou's extension of Milnor-Wolf Theorem. Indeed, if G is an elementary amenable group and ϕ:G→G is an endomorphism, then ϕ has either polynomial or exponential growth. This result follows by studying the growth of automorphisms of finitely generated groups, where we prove some stronger results.
Articolo in rivista - Articolo scientifico
Algebraic entropy; Elementary amenable groups; Group endomorphisms; Growth;
English
13-nov-2019
2020
546
15 March 2020
85
118
reserved
Giordano Bruno, A., Spiga, P. (2020). Milnor-Wolf Theorem for group endomorphisms. JOURNAL OF ALGEBRA, 546(15 March 2020), 85-118 [10.1016/j.jalgebra.2019.10.037].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0021869319306076-main.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 545.29 kB
Formato Adobe PDF
545.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/345934
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
Social impact