In the 1920s, the English philosopher W.E. Johnson introduced a characterization of the symmetric Dirichlet prior distribution in terms of its predictive distribution. This is typically referred to as Johnson’s “sufficientness” postulate, and it has been the subject of many contributions in Bayesian statistics, leading to predictive characterization for infinite-dimensional generalizations of the Dirichlet distribution, i.e., species-sampling models. In this paper, we review “sufficientness” postulates for species-sampling models, and then investigate analogous predictive characterizations for the more general feature-sampling models. In particular, we present a “sufficientness” postulate for a class of feature-sampling models referred to as Scaled Processes (SPs), and then discuss analogous characterizations in the general setup of feature-sampling models.
Camerlenghi, F., Favaro, S. (2021). On johnson’s “sufficientness” postulates for feature-sampling models. MATHEMATICS, 9(22) [10.3390/math9222891].
On johnson’s “sufficientness” postulates for feature-sampling models
Camerlenghi F.
;
2021
Abstract
In the 1920s, the English philosopher W.E. Johnson introduced a characterization of the symmetric Dirichlet prior distribution in terms of its predictive distribution. This is typically referred to as Johnson’s “sufficientness” postulate, and it has been the subject of many contributions in Bayesian statistics, leading to predictive characterization for infinite-dimensional generalizations of the Dirichlet distribution, i.e., species-sampling models. In this paper, we review “sufficientness” postulates for species-sampling models, and then investigate analogous predictive characterizations for the more general feature-sampling models. In particular, we present a “sufficientness” postulate for a class of feature-sampling models referred to as Scaled Processes (SPs), and then discuss analogous characterizations in the general setup of feature-sampling models.File | Dimensione | Formato | |
---|---|---|---|
10281-342338_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
357.13 kB
Formato
Adobe PDF
|
357.13 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.