Visible light communication systems often suffer from high frequency attenuation when transmitting out-of-band. This effect has been ameliorated by multi-band modulations such as multi-band carrier-less amplitude and phase (m-CAP), which minimises the effect of decreased high frequency magnitude and maximises signal-to-noise ratio-per-sub-band. On the other hand, in the pass-band region, super-Nyquist CAP (SCAP) can offer throughput improvements with no additional complexity at the receiver, at the cost of bit error rate. We propose, for the first time, a new hybrid SCAP modulation format that takes advantageous of both SCAP (i.e. overlapped sub-bands within the modulation bandwidth) and conventional m-CAP (orthogonally spaced bands outside the modulation bandwidth) while maintaining isolation between noise sources. We show higher baud rates within the passband region whilst supporting out-of-band transmission at lower error vector magnitudes.
Haigh, P., Chvojka, P., Minotto, A., Burton, A., Murto, P., Wang, E., et al. (2019). Hybrid Super-Nyquist CAP Modulation based VLC with Low Bandwidth Polymer LEDs. In IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC (pp.1492-1497). Institute of Electrical and Electronics Engineers Inc. [10.1109/PIMRC.2019.8904212].
Hybrid Super-Nyquist CAP Modulation based VLC with Low Bandwidth Polymer LEDs
Minotto, A;
2019
Abstract
Visible light communication systems often suffer from high frequency attenuation when transmitting out-of-band. This effect has been ameliorated by multi-band modulations such as multi-band carrier-less amplitude and phase (m-CAP), which minimises the effect of decreased high frequency magnitude and maximises signal-to-noise ratio-per-sub-band. On the other hand, in the pass-band region, super-Nyquist CAP (SCAP) can offer throughput improvements with no additional complexity at the receiver, at the cost of bit error rate. We propose, for the first time, a new hybrid SCAP modulation format that takes advantageous of both SCAP (i.e. overlapped sub-bands within the modulation bandwidth) and conventional m-CAP (orthogonally spaced bands outside the modulation bandwidth) while maintaining isolation between noise sources. We show higher baud rates within the passband region whilst supporting out-of-band transmission at lower error vector magnitudes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.