In this paper we show the existence of non-negative solutions for a Kirchhoff type problem driven by a nonlocal integrodifferential operator, that is -M(∥-u∥-Z2) LKu=λf(x,u)+| u|2*-2u in Ω,u=0in Rn-Ω where L K is an integrodifferential operator with kernel K, Ω is a bounded subset of Rn, M and f are continuous functions, ∥̇ ∥Z is a functional norm and 2* is a fractional Sobolev exponent.

Fiscella, A., Valdinoci, E. (2014). A critical Kirchhoff type problem involving a nonlocal operator. NONLINEAR ANALYSIS, 94, 156-170 [10.1016/j.na.2013.08.011].

A critical Kirchhoff type problem involving a nonlocal operator

A. Fiscella
;
2014

Abstract

In this paper we show the existence of non-negative solutions for a Kirchhoff type problem driven by a nonlocal integrodifferential operator, that is -M(∥-u∥-Z2) LKu=λf(x,u)+| u|2*-2u in Ω,u=0in Rn-Ω where L K is an integrodifferential operator with kernel K, Ω is a bounded subset of Rn, M and f are continuous functions, ∥̇ ∥Z is a functional norm and 2* is a fractional Sobolev exponent.
Articolo in rivista - Articolo scientifico
Kirchhoff equation, vibrating string, fractional Laplacian
English
11-set-2013
2014
94
156
170
none
Fiscella, A., Valdinoci, E. (2014). A critical Kirchhoff type problem involving a nonlocal operator. NONLINEAR ANALYSIS, 94, 156-170 [10.1016/j.na.2013.08.011].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/338136
Citazioni
  • Scopus 395
  • ???jsp.display-item.citation.isi??? 392
Social impact