This article concerns the bifurcation phenomena and the existence of multiple solutions for a non-local boundary value problem driven by the magnetic fractional Laplacian (-Delta)(A)(S). In particular, we consider (-Delta)(A)(S) u = lambda u + vertical bar u vertical bar(2)*(s-2)u in Omega, u = 0 in R-n Omega, where lambda is a real parameter and Omega subset of R-n is an open and bounded set with Lipschitz boundary.
Fiscella, A., Vecchi, E. (2018). Bifurcation and multiplicity results for critical magnetic fractional problems. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018(153), 1-18.
Bifurcation and multiplicity results for critical magnetic fractional problems
Fiscella A
;
2018
Abstract
This article concerns the bifurcation phenomena and the existence of multiple solutions for a non-local boundary value problem driven by the magnetic fractional Laplacian (-Delta)(A)(S). In particular, we consider (-Delta)(A)(S) u = lambda u + vertical bar u vertical bar(2)*(s-2)u in Omega, u = 0 in R-n Omega, where lambda is a real parameter and Omega subset of R-n is an open and bounded set with Lipschitz boundary.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.