This article concerns the bifurcation phenomena and the existence of multiple solutions for a non-local boundary value problem driven by the magnetic fractional Laplacian (-Delta)(A)(S). In particular, we consider (-Delta)(A)(S) u = lambda u + vertical bar u vertical bar(2)*(s-2)u in Omega, u = 0 in R-n Omega, where lambda is a real parameter and Omega subset of R-n is an open and bounded set with Lipschitz boundary.

Fiscella, A., Vecchi, E. (2018). Bifurcation and multiplicity results for critical magnetic fractional problems. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018(153), 1-18.

Bifurcation and multiplicity results for critical magnetic fractional problems

Fiscella A
;
2018

Abstract

This article concerns the bifurcation phenomena and the existence of multiple solutions for a non-local boundary value problem driven by the magnetic fractional Laplacian (-Delta)(A)(S). In particular, we consider (-Delta)(A)(S) u = lambda u + vertical bar u vertical bar(2)*(s-2)u in Omega, u = 0 in R-n Omega, where lambda is a real parameter and Omega subset of R-n is an open and bounded set with Lipschitz boundary.
Articolo in rivista - Articolo scientifico
fractional magnetic operators, critical nonlinearities, variational methods
English
2018
2018
153
1
18
153
none
Fiscella, A., Vecchi, E. (2018). Bifurcation and multiplicity results for critical magnetic fractional problems. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018(153), 1-18.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/338128
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
Social impact