We investigate a class of critical stationary Kirchhoff fractional p-Laplacian problems in presence of a Hardy potential. By using a suitable version of the symmetric mountain-pass lemma due to Kajikiya, we obtain the existence of a sequence of infinitely many arbitrarily small solutions converging to zero.

Ambrosio, V., Fiscella, A., Isernia, T. (2019). Infinitely many solutions for fractional Kirchhoff-Sobolev-Hardy critical problems. ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS(25), 1-13 [10.14232/ejqtde.2019.1.25].

Infinitely many solutions for fractional Kirchhoff-Sobolev-Hardy critical problems

Fiscella A
;
2019

Abstract

We investigate a class of critical stationary Kirchhoff fractional p-Laplacian problems in presence of a Hardy potential. By using a suitable version of the symmetric mountain-pass lemma due to Kajikiya, we obtain the existence of a sequence of infinitely many arbitrarily small solutions converging to zero.
Articolo in rivista - Articolo scientifico
fractional p–Laplacian, Kirchhoff coefficient, Hardy potentials, critical Sobolev exponent, variational methods
English
2019
25
1
13
none
Ambrosio, V., Fiscella, A., Isernia, T. (2019). Infinitely many solutions for fractional Kirchhoff-Sobolev-Hardy critical problems. ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS(25), 1-13 [10.14232/ejqtde.2019.1.25].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/338124
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
Social impact