Luminescent solar concentrators (LSCs) are becoming an increasingly relevant topic for building integrated photovoltaics. Even if such devices are relatively simple planar waveguides doped with a luminescent material, the achievement of relevant efficiencies requires a careful optimisation of both the matrix and the luminophore. Most of the recent literature focuses on the performance, yet the overall sustainability of the strategy is a topic at least as important. In this respect the luminophore plays a crucial role. Suitable materials must feature a near unit emission quantum yield, efficient light harvesting and a large separation between absorption and emission to reduce reabsorption losses. Due to the target application, such materials must also be readily available in large quantities through sustainable processes. Instead of going for performance first and then scaling up/optimising the synthesis, in this paper we offer a reversed perspective. We have first designed and computationally characterised materials having structural features compatible with a green chemistry synthetic approach, namely, micellar catalysis. Later, we have characterised the most promising materials in LSC devices, and we have compared their performance with commercially available, non-green chemistry compliant alternatives having similar spectral features. In the overall, we demonstrate comparable performance, but greatly improved sustainability and scalability. This journal is

Ceriani, C., Corsini, F., Mattioli, G., Mattiello, S., Testa, D., Po, R., et al. (2021). Sustainable by design, large Stokes shift benzothiadiazole derivatives for efficient luminescent solar concentrators. JOURNAL OF MATERIALS CHEMISTRY. C, 9(41), 14815-14826 [10.1039/d1tc03536c].

Sustainable by design, large Stokes shift benzothiadiazole derivatives for efficient luminescent solar concentrators

Ceriani C.
Co-primo
;
Mattiello S.;Beverina L.
2021

Abstract

Luminescent solar concentrators (LSCs) are becoming an increasingly relevant topic for building integrated photovoltaics. Even if such devices are relatively simple planar waveguides doped with a luminescent material, the achievement of relevant efficiencies requires a careful optimisation of both the matrix and the luminophore. Most of the recent literature focuses on the performance, yet the overall sustainability of the strategy is a topic at least as important. In this respect the luminophore plays a crucial role. Suitable materials must feature a near unit emission quantum yield, efficient light harvesting and a large separation between absorption and emission to reduce reabsorption losses. Due to the target application, such materials must also be readily available in large quantities through sustainable processes. Instead of going for performance first and then scaling up/optimising the synthesis, in this paper we offer a reversed perspective. We have first designed and computationally characterised materials having structural features compatible with a green chemistry synthetic approach, namely, micellar catalysis. Later, we have characterised the most promising materials in LSC devices, and we have compared their performance with commercially available, non-green chemistry compliant alternatives having similar spectral features. In the overall, we demonstrate comparable performance, but greatly improved sustainability and scalability. This journal is
Articolo in rivista - Articolo scientifico
Luminescent solar concentrators; Green Chemistry; large Stokes shift; benzothiadiazole
English
28-set-2021
2021
9
41
14815
14826
partially_open
Ceriani, C., Corsini, F., Mattioli, G., Mattiello, S., Testa, D., Po, R., et al. (2021). Sustainable by design, large Stokes shift benzothiadiazole derivatives for efficient luminescent solar concentrators. JOURNAL OF MATERIALS CHEMISTRY. C, 9(41), 14815-14826 [10.1039/d1tc03536c].
File in questo prodotto:
File Dimensione Formato  
Ceriani-2021-Journal of Materials Chemistry C-Preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Altro
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri
Ceriani-2021-Journal of Materials Chemistry C-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 4.59 MB
Formato Adobe PDF
4.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/337507
Citazioni
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
Social impact