The role of progenitor/stem cells in pituitary tumorigenesis, resistance to pharmacological treatments and tumor recurrence is still unclear. This study investigated the presence of progenitor/stem cells in non-functioning pituitary tumors (NFPTs) and tested the efficacy of dopamine receptor type 2 (DRD2) and somatostatin receptor type 2 (SSTR2) agonists to inhibit in vitro proliferation. They found that 70% of 46 NFPTs formed spheres co-expressing stem cell markers, transcription factors (DAX1, SF1, ERG1) and gonadotropins. Analysis of tumor behavior showed that spheres formation was associated with tumor invasiveness (OR = 3,96; IC: 1.05-14.88, p = 0.036). The in vitro reduction of cell proliferation by DRD2 and SSTR2 agonists (31 +/- 17% and 35 +/- 13% inhibition, respectively, p < 0.01 vs. basal) occurring in about a half of NFPTs cells was conserved in the corresponding spheres. Accordingly, these drugs increased cyclin-dependent kinase inhibitor p27 and decreased cyclin D3 expression in spheres. In conclusion, they provided further evidence for the existence of cells with a progenitor/stem cells-like phenotype in the majority of NFPTs, particularly in those with invasive behavior, and demonstrated that the antiproliferative effects of dopaminergic and somatostatinergic drugs were maintained in progenitor/stem-like cells.

Peverelli, E., Giardino, E., Treppiedi, D., Meregalli, M., Belicchi, M., Vaira, V., et al. (2017). Dopamine receptor type 2 (DRD2) and somatostatin receptor type 2 (SSTR2) agonists are effective in inhibiting proliferation of progenitor/stem-like cells isolated from nonfunctioning pituitary tumors. INTERNATIONAL JOURNAL OF CANCER, 140(8), 1870-1880 [10.1002/ijc.30613].

Dopamine receptor type 2 (DRD2) and somatostatin receptor type 2 (SSTR2) agonists are effective in inhibiting proliferation of progenitor/stem-like cells isolated from nonfunctioning pituitary tumors

Carrabba G;
2017

Abstract

The role of progenitor/stem cells in pituitary tumorigenesis, resistance to pharmacological treatments and tumor recurrence is still unclear. This study investigated the presence of progenitor/stem cells in non-functioning pituitary tumors (NFPTs) and tested the efficacy of dopamine receptor type 2 (DRD2) and somatostatin receptor type 2 (SSTR2) agonists to inhibit in vitro proliferation. They found that 70% of 46 NFPTs formed spheres co-expressing stem cell markers, transcription factors (DAX1, SF1, ERG1) and gonadotropins. Analysis of tumor behavior showed that spheres formation was associated with tumor invasiveness (OR = 3,96; IC: 1.05-14.88, p = 0.036). The in vitro reduction of cell proliferation by DRD2 and SSTR2 agonists (31 +/- 17% and 35 +/- 13% inhibition, respectively, p < 0.01 vs. basal) occurring in about a half of NFPTs cells was conserved in the corresponding spheres. Accordingly, these drugs increased cyclin-dependent kinase inhibitor p27 and decreased cyclin D3 expression in spheres. In conclusion, they provided further evidence for the existence of cells with a progenitor/stem cells-like phenotype in the majority of NFPTs, particularly in those with invasive behavior, and demonstrated that the antiproliferative effects of dopaminergic and somatostatinergic drugs were maintained in progenitor/stem-like cells.
Articolo in rivista - Articolo scientifico
dopamine; drug resistance; pituitary adenomas; somatostatin; tumor stem cells.
English
2017
140
8
1870
1880
reserved
Peverelli, E., Giardino, E., Treppiedi, D., Meregalli, M., Belicchi, M., Vaira, V., et al. (2017). Dopamine receptor type 2 (DRD2) and somatostatin receptor type 2 (SSTR2) agonists are effective in inhibiting proliferation of progenitor/stem-like cells isolated from nonfunctioning pituitary tumors. INTERNATIONAL JOURNAL OF CANCER, 140(8), 1870-1880 [10.1002/ijc.30613].
File in questo prodotto:
File Dimensione Formato  
Peverelli_et_al-2017-International_Journal_of_Cancer.pdf

Solo gestori archivio

Dimensione 741.57 kB
Formato Adobe PDF
741.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/329432
Citazioni
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 47
Social impact